函數(shù)y=f(x)對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.

(Ⅰ)求f(0)的值;

(Ⅱ)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達式并用數(shù)學歸納法證明你的結(jié)論;

(Ⅲ)若f(1)≥1,求證:

答案:
解析:

  解證:(Ⅰ)令  4分

  (Ⅱ),  6分

  猜想,下用數(shù)學歸納法證明之.(略)  8分

  (Ⅲ),則

  假設(shè)時命題成立,即,則

  ,

  由上知,則.  13分


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:山東省梁山一中2010-2011學年高二下學期期末考試數(shù)學理科試題 題型:013

已知函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖像關(guān)于點(1,0)對稱,若對任的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,則當x>3時,x2+y2的取值范圍是

[  ]
A.

(3,7)

B.

(9,25)

C.

(13,49)

D.

(9,49)

查看答案和解析>>

科目:高中數(shù)學 來源:山西省汾陽中學2010-2011學年高一第一次月考數(shù)學試題 題型:044

已知定義在R+上的函數(shù)f(x)同時滿足下列三個條件:(1)f(3)=-1 (2)對任x,y都有f(xy)=f(x)+f(y) (3)x>1時,f(x)<0

1.求f(9),f()的值

2.證明f(x)在(0,+∞)上是減函數(shù)

3.解關(guān)于x的不等式:f(6x)<f(x-1)-2

查看答案和解析>>

科目:高中數(shù)學 來源:全優(yōu)設(shè)計選修數(shù)學-2-2蘇教版 蘇教版 題型:022

已知函數(shù)y=f(x),設(shè)x0是定義域內(nèi)任一點,如果對x0附近的所有點x,都有f(x)<f(x0),則稱函數(shù)f(x)在點x0處取_________,記作_________.并把x0稱為函數(shù)f(x)的一個_________.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(福建卷) 題型:013

對于具有相同定義域D的函數(shù)f(x)和g(x),若存在函數(shù)h(x)=kxb(k,b為常數(shù)),對任給的正數(shù)m,存在相應(yīng)的x0D,使得當x∈Dxx0時,總有則稱直線l:ykxb為曲線yf(x)與yg(x)的“分漸近線”.給出定義域均為D={x|x>1}的四組函數(shù)如下:

f(x)=x2g(x)=;

f(x)=10-x+2,g(x)=;

③f(x)=,g(x)=;

④f(x)=,g(x)=2(x-1-e-x)

其中,曲線yf(x)與yg(x)存在“分漸近線”的是

[  ]
A.

①④

B.

②③

C.

②④

D.

③④

查看答案和解析>>

科目:高中數(shù)學 來源:2010年全國普通高等學校招生統(tǒng)一考試、文科數(shù)學(上海卷) 題型:044

若實數(shù)xy、m滿足|xm|<|ym|,則稱xy接近m

(1)若x21比3接近0,求x的取值范圍;

(2)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2a3b3接近2ab;

(3)已知函數(shù)f(x)的定義域D={x|x,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

同步練習冊答案