已知函數(shù)f(x)=-x2+2x。
(1)判斷f(x)在區(qū)間(-∞,1]上的單調(diào)性,并證明你的結(jié)論;
(2)當(dāng)x∈[0,5]時(shí),求f(x)的最大值和最小值。
解:(1)f(x)在區(qū)間(-∞,1]上為增函數(shù),
下面給予證明: 任取x1,x2∈(-∞,1]且x1<x2,
則f(x1)-f(x2)=()-(
=,
,
,且,
,
,即
∴f(x)在區(qū)間(-∞,1]上是減函數(shù)。
(2)函數(shù)的圖象開口向下,對(duì)稱軸為x=1,
∴f(x)在[0,1]上單調(diào)遞增,在[1,5]上單調(diào)遞減,

∴f(x)在[0,5]上的最大值為1,最小值為-15。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)
,
求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實(shí)數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案