【題目】 為向國際化大都市目標(biāo)邁進,沈陽市今年新建三大類重點工程,它們分別是30項基礎(chǔ)設(shè)施類工程,20項民生類工程和10項產(chǎn)業(yè)建設(shè)類工程.現(xiàn)有來沈陽的3名工人相互獨立地從這60個項目中任選一個項目參與建設(shè).

)求這3人選擇的項目所屬類別互異的概率;

)將此3人中選擇的項目屬于基礎(chǔ)設(shè)施類工程或產(chǎn)業(yè)建設(shè)類工程的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

【答案】I;(II分布列見解析,

【解析】

試題I人選擇的項目所屬類別互異的概率:;(II)任一名工人選擇的項目屬于基礎(chǔ)設(shè)施類或產(chǎn)業(yè)建設(shè)類工程的概率:且符合二項分布,根據(jù)二項分布分布列公式即可求得.

試題解析:記第名工人選擇的項目屬于基礎(chǔ)設(shè)施類,民生類,產(chǎn)業(yè)建設(shè)類分別為事件.

由題意知均相互獨立.

3人選擇的項目所屬類別互異的概率:

)任一名工人選擇的項目屬于基礎(chǔ)設(shè)施類或產(chǎn)業(yè)建設(shè)類工程的概率:

.

的分布列為

0

1

2

3

其數(shù)學(xué)期望為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校升旗儀式上,主持人站在主席臺前沿D處,測得旗桿AB頂部的仰角為俯角最后一排學(xué)生C的俯角為最后一排學(xué)生C測得旗桿頂部的仰角為旗桿底部與學(xué)生在一個水平面上,并且不計學(xué)生身高.

(1)設(shè)米,試用表示旗桿的高度AB(米);

(2)測得米,若國歌長度約為50秒,國旗班升旗手應(yīng)以多大的速度勻速升旗才能是國旗到達旗桿頂點時師生的目光剛好停留在B處?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且滿足.

(1)判斷函數(shù)上的單調(diào)性,并用定義證明;

(2)設(shè)函數(shù),在區(qū)間上的最大值;

(3)若存在實數(shù)m,使得關(guān)于x的方程恰有4個不同的正根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時取得極值.

(1)的值;

(2)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理化學(xué)等其他互不相同的七個學(xué)院,現(xiàn)從這10名同學(xué)中隨機選取3名同學(xué),到希望小學(xué)進行支教活動(每位同學(xué)被選到的可能性相同).

(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;

(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,角的對邊分別為,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進行抽樣檢查,測得身高情況的統(tǒng)計圖如圖所示:

(1)估計該校男生的人數(shù);

(2)估計該校學(xué)生身高在170185cm的概率;

(3)從樣本中身高在180190cm的男生中任選2人,求至少有1人身高在185190cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為集合的子集,且,若,則稱為集合元“大同集”.

(1)寫出實數(shù)集的一個二元“大同集”;

(2)是否存在正整數(shù)集的二元“大同集”,請說明理由;

(3)求出正整數(shù)集的所有三元“大同集”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.

求橢圓E的方程;

A是橢圓E的左頂點,經(jīng)過左焦點F的直線l與橢圓E交于C,D兩點,求為坐標(biāo)原點的面積之差絕對值的最大值.

已知橢圓E上點處的切線方程為,T為切點P是直線上任意一點,從P向橢圓E作切線,切點分別為N,M,求證:直線MN恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案