已知數(shù)列{an}是首項a1=的等比數(shù)列,其前n項和Sn中S3,S4,S2成等差數(shù)列,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=|an|,若Tn=++…+,求證:≤Tn
【答案】分析:(1)若q=1,則S3=,S4=1,S2=,顯然S3,S4,S2不構(gòu)成等差數(shù)列,所以q≠1;當q≠1時,由S3,S4,S2成等差數(shù)列得=,可求公比,進而可求數(shù)列{an}的通項公式;
(2)根據(jù)bn=|an|=n+1,可得,可求Tn,進而可得{Tn}是遞增數(shù)列,故可得證.
解答:(1)解:若q=1,則S3=,S4=1,S2=,顯然S3,S4,S2不構(gòu)成等差數(shù)列.
∴q≠1,
當q≠1時,由S3,S4,S2成等差數(shù)列得=
∴2q2-q-1=0
∵q≠1,∴
∵a1=

(2)證明:∵bn=|an|=n+1,

∴Tn=++…+=

∴{Tn}是遞增數(shù)列.
∴T1≤Tn
≤Tn
點評:本題以等比數(shù)列為載體,考查數(shù)列的通項公式,考查裂項法求數(shù)列的和,考查不等式的證明,解題的關(guān)鍵是裂項法求數(shù)列的和.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為3,公差為2的等差數(shù)列,其前n項和為Sn,數(shù)列{bn}為等比數(shù)列,且b1=1,bn>0,數(shù)列{ban}是公比為64的等比數(shù)列.
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項a1=
1
4
的等比數(shù)列,其前n項和Sn中S3,S4,S2成等差數(shù)列,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求證:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為1的等差數(shù)列,且公差不為零,而等比數(shù)列{bn}的前三項分別是a1,a2,a6
(I)求數(shù)列{an}的通項公式an
(II)若b1+b2+…bk=85,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為1,公差為2的等差數(shù)列,又數(shù)列{bn}的前n項和Sn=nan
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)若cn=
1bn(2an+3)
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項a1=a,公差為2的等差數(shù)列,數(shù)列{bn}滿足2bn=(n+1)an;
(1)若a1、a3、a4成等比數(shù)列,求數(shù)列{an}的通項公式;
(2)若對任意n∈N*都有bn≥b5成立,求實數(shù)a的取值范圍;
(3)數(shù)列{cn}滿足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,當a=-20時,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步練習冊答案