由a2,2-a,4組成一個(gè)集合A,A中含有3個(gè)元素,則實(shí)數(shù)a的取值可以是( 。
分析:通過選項(xiàng)a的值回代驗(yàn)證,判斷集合中有3個(gè)元素即可.
解答:解:當(dāng)a=1時(shí),由a2=1,2-a=1,4組成一個(gè)集合A,A中含有2個(gè)元素,
當(dāng)a=-2時(shí),由a2=4,2-a=4,4組成一個(gè)集合A,A中含有1個(gè)元素,
當(dāng)a=6時(shí),由a2=36,2-a=-4,4組成一個(gè)集合A,A中含有3個(gè)元素,
當(dāng)a=2時(shí),由a2=4,2-a=0,4組成一個(gè)集合A,A中含有2個(gè)元素,
故選C.
點(diǎn)評:本題考查元素與集合的關(guān)系,基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三第五次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

同步練習(xí)冊答案