精英家教網 > 高中數學 > 題目詳情

解答題:解答應寫出文字說明,證明過程或演算步驟

如圖,四面體ABCD中,O、E分別是BD、BC的中點,

(1)

求證:平面BCD;

(2)

求異面直線AB與CD所成角的大;

(3)

求點E到平面ACD的距離.

答案:
解析:

(1)

方法一:證明:連結OC

中,由已知可得

平面

(2)

  方法一:解:取AC的中點M,連結OM、ME、OE,由E為BC的中點知

∴直線OE與EM所成的銳角就是異面直線AB與CD所成的角

中,

是直角斜邊AC上的中線,

異面直線AB與CD所成角的大小為

  方法二:解:以O為原點,如圖建立空間直角坐標系,則

異面直線AB與CD所成角的大小為

(3)

  方法一:解:設點E到平面ACD的距離為

中,

點E到平面ACD的距離為

  方法二:解:設平面ACD的法向量為

是平面ACD的一個法向量.

點E到平面ACD的距離


練習冊系列答案
相關習題

科目:高中數學 來源:山西省實驗中學2006-2007學年度第一學期高三年級第三次月考 數學試題 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟

(1)

(理)已知數列相鄰兩項an,an+1是方程的兩根(n∈N+)且a1=2,Sn=c1+c2+…+cn,求an與S2n

(2)

(文)已知f(x)=x2-4x+3,又f(x-1),,f(x)是一個遞增等差數列{an}的前3項

(1)求此數列的通項公式

(2)求a2+a5+a8+…+a26的值.

查看答案和解析>>

科目:高中數學 來源:河南省信陽市商城高中2006-2007學年度高三數學單元測試、不等式二 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

證明下列不等式:

(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xyyzzx)

(理)若x,yz∈R+,且xyzxyz,則≥2

查看答案和解析>>

科目:高中數學 來源:河南省信陽市商城高中2006-2007學年度高三數學單元測試、不等式二 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

設f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(1)

方程f(x)=0有實根.

(2)

a>0且-2<<-1;

(3)

(理)方程f(x)=0在(0,1)內有兩個實根.

(文)設x1,x2是方程f(x)=0的兩個實根,則

查看答案和解析>>

科目:高中數學 來源:四川省成都市名校聯(lián)盟2008年高考數學沖刺預測卷(四)附答案 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

已知函數f(x)的圖像與函數的圖像關于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數,求實數a的取值范圍;

(理)若,且g(x)在區(qū)間(0,2]上為減函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:四川省成都市名校聯(lián)盟2008年高考數學沖刺預測卷(四)附答案 題型:044

解答題:解答應寫出文字說明,證明過程或演算步驟.

如圖,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD,BC.橢圓CA、B為焦點且經過點D

(1)建立適當坐標系,求橢圓C的方程;

(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.

(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線lAB夾角的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案