已知數(shù)列{an}中,a1=1,a2=2,an+2=an+1-an(n∈N+),則a2012=________.

2
分析:由題中的遞推公式可以求出數(shù)列的各項(xiàng),通過歸納、猜想,得出正確結(jié)果.
解答:在數(shù)列an中,a1=1,a2=2,an+2=an+1-an;
分析可得:a3=a2-a1=2-1=1,a4=a3-a2=1-2=-1,
a5=a4-a3=-1-1=-2,a6=a5-a4=-2+1=-1,
a7=a6-a5=-1+2=1,a8=a7-a6=1-(-1)=2,…
由以上知:數(shù)列每六項(xiàng)后會(huì)出現(xiàn)相同的循環(huán),
所以a2012=a2=2.
故答案為:2.
點(diǎn)評(píng):本題地考查數(shù)列的遞推公式的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意遞推思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案