隨機(jī)變量χ2的值,其值越大,說明兩個分類變量間有關(guān)系的可能性________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校課題小組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機(jī)抽取高二年級20名學(xué)生某次考試成績(滿分100分)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數(shù)學(xué)成績 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成績 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):
數(shù)學(xué)成績優(yōu)秀 數(shù)學(xué)成績不優(yōu)秀 合計
物理成績優(yōu)秀
物理成績不優(yōu)秀
合計 20
(2)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多大的把握,認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?
(3)若從這20個人中抽出1人來了解有關(guān)情況,求抽到的學(xué)生數(shù)學(xué)成績與物理成績至少有一門不優(yōu)秀的概率.
參考數(shù)據(jù):
①假設(shè)有兩個分類變量X和Y,它們的值域分別為{x1,x2}和{y1,y2},其樣本頻數(shù)列聯(lián)表(稱為2×2列聯(lián)表)為:
y1 y2 合計
x1 a b a+b
x2 c d c+d
合計 a+c b+d a+b+c+d
則隨機(jī)變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨立檢驗隨機(jī)變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機(jī)抽取高二年級20名學(xué)生某次考試成績(滿分100分)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數(shù)學(xué)成績 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成績 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):
數(shù)學(xué)成績優(yōu)秀 數(shù)學(xué)成績不優(yōu)秀   合   計
物理成績優(yōu)秀
物理成績不優(yōu)秀
合   計 20
(2)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多大的把握,認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?
參考數(shù)據(jù):
①假設(shè)有兩個分類變量X和Y,它們的值域分別為{x1,x2}和y1,y2,其樣本頻數(shù)列聯(lián)表(稱為2×2列聯(lián)表)為:
y1 y2 合計
x1 a b a+b
x2 c d c+d
合計 a+c b+d a+b+c+d
則隨機(jī)變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨立檢驗隨機(jī)變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有三張形狀、大小、質(zhì)地完全一致的卡片,在每張卡片上分別寫上0,1,2,現(xiàn)從中任意抽取一張,將其上的數(shù)字記作x,然后放回,再抽取一張,將其上的數(shù)字記作y,令

(1)求X所取各值的概率;

(2)求隨機(jī)變量X的均值與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年新疆農(nóng)七師高級中學(xué)高二第二學(xué)期第二階段考試數(shù)學(xué)(理)試題 題型:解答題

(本題滿分12分)某學(xué)校組織的一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次:在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次。某學(xué)生在A處的命中率q1=0.25,在B處的命中率q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用X表示該同學(xué)投籃結(jié)束后所得的總分,其分布列如下:

X

0

2

3

4

5

P

0.03

p1

p2

p3

p4

(1)求q2的值;

(2)求隨機(jī)變量X的均值E(X);

(3)試比較該同學(xué)選擇都在B處投籃得分超過3分與上述方式投籃得分超過3分的概率的大小。

 

查看答案和解析>>

同步練習(xí)冊答案