若函數(shù)f(x)對一切x、y都有f(x+y)=f(x)+f(y),
(1)試判斷f(x)的奇偶性;
(2)若f(-3)=a,用a表示f(12).
【答案】分析:(1)判斷f(x)奇偶性,即找出f(-x)與f(x)之間的關系,∴令y=-x,有f(0)=f(x)+f(-x),故問題轉化為求f(0)即可,可對x、y都賦值為0;
(2)由于知曉f(-3)=a故解本題關鍵是找出f(12)與f(-3)之間的關系,注意用(1)的結論.
解答:解:(1)顯然f(x)的定義域是R,關于原點對稱.
又∵函數(shù)對一切x、y都有f(x+y)=f(x)+f(y),
∴令x=y=0,得f(0)=2f(0),∴f(0)=0.
再令y=-x,得f(0)=f(x)+f(-x),
∴f(-x)=-f(x),
∴f(x)為奇函數(shù).
(2)∵f(-3)=a且f(x)為奇函數(shù),
∴f(3)=-f(-3)=-a.
又∵f(x+y)=f(x)+f(y),x、y∈R,
∴f(12)=f(6+6)=f(6)+f(6)=2f(6)=2f(3+3)=4f(3)=-4a.
故f(12)=-4a.
點評:本題考點是抽象函數(shù)及其性質,在研究其奇偶性時本題采取了連續(xù)賦值的技巧,這是判斷抽象函數(shù)性質時常用的一種探究的方式,在第二問的求值中根據(jù)恒等式的結構把已知用未知表示出來,做題時注意體會抽象函數(shù)恒等式的用法規(guī)律.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

26、若函數(shù)f(x)對一切x、y都有f(x+y)=f(x)+f(y),
(1)試判斷f(x)的奇偶性;
(2)若f(-3)=a,用a表示f(12).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若函數(shù)f(x)對一切x、y都有f(x+y)=f(x)+f(y),
(1)試判斷f(x)的奇偶性;
(2)若f(-3)=a,用a表示f(12).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若函數(shù)f(x)對一切x、y都有f(x+y)=f(x)+f(y),
(1)試判斷f(x)的奇偶性;
(2)若f(-3)=a,用a表示f(12).

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學一輪精品復習學案:2.3 函數(shù)的奇偶性(解析版) 題型:解答題

若函數(shù)f(x)對一切x、y都有f(x+y)=f(x)+f(y),
(1)試判斷f(x)的奇偶性;
(2)若f(-3)=a,用a表示f(12).

查看答案和解析>>

同步練習冊答案