已知拋物線C:y2=2px(p>0)過點(diǎn)P(1,-2).
(Ⅰ)求拋物線C的方程,并求其準(zhǔn)線方程;
(Ⅱ)過焦點(diǎn)F且斜率為2的直線l與拋物線交于A,B兩點(diǎn),求△OAB的面積.
考點(diǎn):直線與圓錐曲線的關(guān)系,拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)通過點(diǎn)的坐標(biāo)適合方程求拋物線C的方程,并求其準(zhǔn)線方程;
(Ⅱ)過焦點(diǎn)F且斜率為2的直線l,設(shè)出直線方程,利用過焦點(diǎn)F且斜率為2的直線l與拋物線交于A,B兩點(diǎn),聯(lián)立方程組,利用韋達(dá)定理弦長(zhǎng)公式以及點(diǎn)到直線的距離求出△OAB的面積.
解答: (本小題滿分(13分),(Ⅰ)小問(5分),(Ⅱ)小問8分)
解:(Ⅰ)由題意:4=2p,解得:p=2,
從而拋物線的方程為y2=4x,準(zhǔn)線方程為x=-1…(5分)
(Ⅱ)拋物線焦點(diǎn)坐標(biāo)為F(1,0),依題意可設(shè)直線y=2x-2…(6分)
設(shè)點(diǎn)A(x1,y1),B(x2,y2
聯(lián)立
y=2x-2
y2=4x
得:4x2-12x+4=0,即x2-3x+1=0…(8分)
設(shè)點(diǎn)A(x1,y1),B(x2,y2),則由韋達(dá)定理有:x1+x2=3,x1x2=1…(9分)
則弦長(zhǎng)|AB|=
5
|x1-x2|=
5
(x1+x2)2-4x1x2
=
5
9-4
=5
…(11分)
而原點(diǎn)O(0,0)到直線l的距離d=
2
5
5
…(12分)
S△FAB=
1
2
×|AB|×d=
5
…(13分)
點(diǎn)評(píng):本題考查直線與拋物線的位置關(guān)系的應(yīng)用,拋物線的方程的求法以及性質(zhì)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線f(x)=x2+x+1在點(diǎn)(0,1)處的切線方程為(  )
A、x+y+1=0
B、x+y-1=0
C、x-y+1=0
D、x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在兩個(gè)袋內(nèi),分別裝著寫有0,1,2,3,4,5六個(gè)數(shù)字的6張卡片,今從每個(gè)袋中各任取一張卡片,則兩數(shù)之和等于5的概率為( 。
A、
1
3
B、
1
6
C、
1
9
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m≥2,求證:
m2-2
-
2
≥m-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分解因式:
(1)5x2-15x+2xy-6y
(2)3a3b-81b4
(3)-a4+16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知acosB+bcosA=2(bcosC+ccosB).
(1)求
sinC
sinA
的值;
(2)若cosB=
1
4
,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在x∈[-e,0)上的函數(shù)f(x)=ax-ln(-x),是否存在實(shí)數(shù)a,使f(x)的最小值為3,若存在,求出a的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在AD上且AG=
1
3
GD,BG⊥GC,GB=GC=2,E是BC的中點(diǎn),四面體P-BCG的體積為
8
3

(1)求直線DP到平面PBG所成角的正弦值;
(2)在棱PC上是否存在一點(diǎn)F,使異面直線DF與GC所成的角為60°,若存在,確定點(diǎn)F的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F(c,0),以原點(diǎn)為圓心,c為半徑的圓與雙曲線在第二象限的交點(diǎn)為A,若此圓在A點(diǎn)處的切線的斜率為
3
3
,則雙曲線C的離心率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案