分析:(I)利用n≥2時,數(shù)列的通項a
n與前n項和S
n的關(guān)系可得a
n=qa
n-1,再根據(jù)等差,等比數(shù)列的定義判斷即可.
(II)先求出{a
n}與{b
n}的通項公式,從而得到{c
n}的通項以及Tn,然后利用裂項求和法求出B
n,利用錯位相消法求出A
n,再將
An與B
n作差比較即可.
解答:解:(Ⅰ)S
n=
⇒(1-q)Sn=2-qan且q≠1
當(dāng)n=1時,(1-q)S
1=2-qa
1⇒a
1=2
當(dāng)n≥2時,(1-q)S
n-(1-q)S
n-1=qa
n-1-qa
n⇒a
n=qa
n-1∴{a
n}是以2為首項,公比為q的等比數(shù)列.
(Ⅱ) 當(dāng)q=
時,由(1)得 a
n=2
()n-1又 f(x)=
x2+2x-,∴f′(x)=x+2
由b
n+1=f′(b
n)得b
n+1=f′(b
n)=b
n+2
∴{b
n}是以2為首項,公差為2的等差數(shù)列,
故b
n=2n
∴c
n=
anbn=n()n T
n=
=n(n+1),
B
n=
++…+=++…+=1-A
n=c
1+c
2+…+c
n=1•
+
2()2+…+
n()n…①
∴
An=1•()2+2()3+3()4+…+(n-1)()n+n()n+1…②
①-②得∴
An=1•()1+()2+()3+…+()n-n()n+1=
-n()n+1=-n()n+1∴
An=1--•∴
An-Bn=1--•-1+=-=3n+1-(2n2+5n+3) |
(n+1)•3n+1 |
當(dāng)n=1時,
An-Bn=3n+1-(2n2+5n+3) |
(n+1)•3n+1 |
=<0
∴
An<Bn當(dāng)n≥2時,
令g(x)=3
x+1-(2x
2+5x+3)
則g′(x)=3
x+1ln3-(4x+5),g
∥(x)=3
x+1(ln3)
2-4在[2,+∞)上為單調(diào)增函數(shù),
∴g
∥(x)=3
x+1(ln3)
2-4≥3
3(ln3)
2-4>0
∴g′(x)=3
x+1ln3-(4x+5)在[2,+∞)上為單調(diào)增函數(shù),
g′(x)=3
x+1ln3-(4x+5)≥3
3ln3-9>27-9>0
g(x)=3
x+1-(2x
2+5x+3)在[2,+∞)上為單調(diào)增函數(shù),
∴當(dāng)n≥2時,g(n)=3
n+1-(2n
2+5n+3)≥3
3-(2×4+10+3)>0
即當(dāng)n≥2時,
An-Bn=3n+1-(2n2+5n+3) |
(n+1)•3n+1 |
>0
∴當(dāng)n≥2時,
An>Bn又f′(x)=x+2>0對x≥0恒成立,
∴f(x)在[0,+∞)上單調(diào)遞增,
∴當(dāng)n=1時f(
An)<f(B
n)
當(dāng)n≥2時f(
An)>f(B
n).
點評:本題主要考查了數(shù)列與不等式的綜合,同時考查了裂項求和法和錯位相消法的運用,屬于難題.