分析 根據(jù)函數(shù)的單調(diào)性和最值求出ω 和φ的值即可得到結(jié)論.
解答 解:∵函數(shù)f(x)=sin(ωx+φ)(ω>0且|φ|<$\frac{π}{2}$)在區(qū)間($\frac{π}{6}$,$\frac{2π}{3}$)上是單調(diào)減函數(shù),且函數(shù)值從1減小到-1,
∴$\frac{T}{2}$=$\frac{2π}{3}$-$\frac{π}{6}$=$\frac{π}{2}$,即函數(shù)的周期T=π,
∵T=$\frac{2π}{ω}$=π,
∴ω=2,
則f(x)=sin(2x+φ),
∵f($\frac{π}{6}$)=sin(2×$\frac{π}{6}$+φ)=1,
∴sin($\frac{π}{3}$+φ)=1,
即$\frac{π}{3}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{π}{6}$+2kπ,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴當(dāng)k=0時(shí),φ=$\frac{π}{6}$,
即f(x)=sin(2x+$\frac{π}{6}$),
則f($\frac{π}{4}$)=sin(2×$\frac{π}{4}$+$\frac{π}{6}$)=sin($\frac{π}{2}$+$\frac{π}{6}$)=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$,
故答案是:$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象的應(yīng)用,根據(jù)條件求出ω 和φ的值是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要 | B. | 必要非充分 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com