已知函數(shù)f(x)=x2-2|x|-2(-3≤x≤3)
(Ⅰ)證明:f(x)是偶函數(shù)
(Ⅱ)畫出該函數(shù)的圖象
(Ⅲ)指出該函數(shù)的單調(diào)區(qū)間和值域.
分析:(Ⅰ)由于函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,且滿足f(-x)=f(x),可得函數(shù)為偶函數(shù).
(Ⅱ)根據(jù) f(x)=
x2-2x-2 , 0≤x≤3
x2+2x-2 , -3≤x<0
,畫出該函數(shù)的圖.
(Ⅲ)結(jié)合函數(shù)的圖象可得出該函數(shù)的單調(diào)增區(qū)間和值域.
解答:解:(Ⅰ)由于函數(shù)f(x)=x2-2|x|-2(-3≤x≤3)的定義域關(guān)于原點(diǎn)對(duì)稱,
且滿足f(-x)=(-x)2-2|-x|-2=x2-2|x|-2=f(x),
故函數(shù)為偶函數(shù).
(Ⅱ)根據(jù) f(x)=
x2-2x-2 , 0≤x≤3
x2+2x-2 , -3≤x<0
,畫出該函數(shù)的圖如圖:
(Ⅲ)結(jié)合函數(shù)的圖象可得出該函數(shù)的單調(diào)增區(qū)間為(-1,0)、(1,3];
減區(qū)間為[-3,-1]、[0,1].
函數(shù)的值域?yàn)閇-3,1].
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性的判斷、畫函數(shù)的圖象,求函數(shù)的單調(diào)區(qū)間和值域,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案