已知x,y滿足約束條件目標(biāo)函數(shù)z=log2y-log2x,則z的取值范圍是( )
A.[-2,2]
B.[-1,1]
C.[-3,3]
D.[-4,4]
【答案】分析:本題考查的知識(shí)點(diǎn)是簡(jiǎn)單線性規(guī)劃的應(yīng)用,我們要先畫(huà)出滿足約束條件 的平面區(qū)域,然后分析 z=log2y-log2x=z=log2幾何意義,進(jìn)而給出 z的取值范圍.
解答:解:滿足約束條件 平面區(qū)域,如下圖所示:
∵z=log2y-log2x=z=log2,其中表示區(qū)域內(nèi)點(diǎn)P與O(0,0)點(diǎn)連線的斜率
又∵當(dāng)點(diǎn)P在A時(shí),即當(dāng)x=1,y=4時(shí),z最大,最大值為z=2,
∵當(dāng)點(diǎn)P在B時(shí),即當(dāng)x=4,y=1時(shí),z最小,最小值為z=-2,
標(biāo)函數(shù)z=log2y-log2x,則z的取值范圍是[-2,2]
故選A
點(diǎn)評(píng):平面區(qū)域的最值問(wèn)題是線性規(guī)劃問(wèn)題中一類重要題型,在解題時(shí),關(guān)鍵是正確地畫(huà)出平面區(qū)域,分析表達(dá)式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點(diǎn)的坐標(biāo),即可求出答案
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y 滿足約束條
x-2y≤24
3x+2y≥36
y≥1
則z=2x-3y的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(a,b)作兩條直線l1,l2,斜率分別為1,-1,已知l1與圓O1:(x+2)2+(y-2)2=2交于不同的兩點(diǎn)A,B,l2與圓O2:(x-3)2+(y-4)2=2交于不同的兩點(diǎn)C,D,且|AB|=|CD|.
(Ⅰ)求:a,b所滿足的約束條件;
(Ⅱ)求:
a2-b2a2+b2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二文科數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:選擇題

已知向量,且,若變量x,y滿足約束條,則z的最大值為                            

A.1             B.2         C.3            D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年河北省唐山市高二(上)第一次質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:填空題

已知x,y 滿足約束條則z=2x-3y的最大值   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足約束條的最小值是                                 

A.9                            B.20                          C.                        D.

查看答案和解析>>

同步練習(xí)冊(cè)答案