已知{an}是等比數(shù)列,a2=2,a5=
1
4
,則a1a2+a2a3+…+anan+1=(  )
A、16(1-4-n
B、16(1-2-n
C、
32
3
(1-4-n
D、
32
3
(1-2-n
分析:首先根據(jù)a2和a5求出公比q,根據(jù)數(shù)列{anan+1}每項(xiàng)的特點(diǎn)發(fā)現(xiàn)仍是等比數(shù)列,且首項(xiàng)是a1a2=8,公比為
1
4
.進(jìn)而根據(jù)等比數(shù)列求和公式可得出答案.
解答:解:由a5=
1
4
=a2q3=2•q3
,解得q=
1
2

數(shù)列{anan+1}仍是等比數(shù)列:其首項(xiàng)是a1a2=8,公比為
1
4
,
所以,a1a2+a2a3+…+anan+1=
8[1-(
1
4
)
n
]
1-
1
4
=
32
3
(1-4-n)

故選C.
點(diǎn)評(píng):本題主要考查等比數(shù)列通項(xiàng)的性質(zhì)和求和公式的應(yīng)用.應(yīng)善于從題設(shè)條件中發(fā)現(xiàn)規(guī)律,充分挖掘有效信息.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•溫州一模)已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:溫州一模 題型:單選題

已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江省溫州市八校聯(lián)考高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知q是等比數(shù){an}的公比,則q<1”是“數(shù)列{an}是遞減數(shù)列”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案