曲線y=f(x)=ax3+bx2+cx,當(dāng)時(shí),f(x)有極小值,當(dāng)處有極大值,且在x=1處切線的斜率為
(I)求f(x);
(II)曲線上是否存在一點(diǎn)P,使得y=f(x)的圖象關(guān)于點(diǎn)P中心對(duì)稱?若存在,請(qǐng)求出點(diǎn)P坐標(biāo),并給出證明;若不存在,請(qǐng)說明理由.
【答案】分析:(I)根據(jù)1±是極值點(diǎn)可知f′(1±)=0,以及f′(1)=建立方程組,解之即可;
(II)假設(shè)存在P(x,y)滿足則f(x+x)+f(x-x)=2y,代入函數(shù)解析式,化簡(jiǎn)整理可求出所求.
解答:解:(I)f′(x)=3ax2+2bx+c
∵當(dāng)時(shí),f(x)有極小值,當(dāng)處有極大值
∴f′(1±)=0
即1±為方程3ax2+2bx+c=0的兩根
∴-=(1+)+(1-
=(1+)(1-
∴b=-3a,c=-6a
又f(x)在x=1處切線的斜率為
∴f′(1)=
∴3a+2b+c=
∴a=-,b=,c=1
∴f(x)=-x3+x2+x
(II)假設(shè)存在P(x,y)滿足則f(x+x)+f(x-x)=2y,
∴-(x+x)3+(x+x)2+(x+x)-(x-x)3+(x-x)2+(x-x)=2y
化簡(jiǎn)得(1-x)x2+x2+2x-x3=2y,
∵上式任意x∈R等式成立

∴x=1,y=
∴曲線上存在P(1,)滿足題意
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及函數(shù)在某點(diǎn)取得極值的條件,同時(shí)考查了方程組的解法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
13
ax3+2x2,其中a>0
(Ⅰ)當(dāng)a=3時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(Ⅱ) 若函數(shù)f(x)在區(qū)間(-2,0)上是減函數(shù),求a的取值范圍;
(Ⅲ)若函數(shù)y=f(x)在區(qū)間[-1,1]上的最小值為-2時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-lnx,x∈(0,e).曲線y=f(x)在點(diǎn)(t,f(t))處的切線與x軸和y軸分別交于A、B兩點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx3+2nx2-12x的減區(qū)間是(-2,2).
(1)試求m、n的值;
(2)求過點(diǎn)A(1,-11)且與曲線y=f(x)相切的切線方程;
(3)過點(diǎn)A(1,t)是否存在與曲線y=f(x)相切的3條切線,若存在求實(shí)數(shù)t的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•惠州模擬)已知二次函數(shù)y=g(x)的圖象經(jīng)過點(diǎn)O(0,0)、A(m,0)與點(diǎn)P(m+1,m+1),設(shè)函數(shù)f(x)=(x-n)g(x)在x=a和x=b處取到極值,其中m>n>0,b<a.
(1)求g(x)的二次項(xiàng)系數(shù)k的值;
(2)比較a,b,m,n的大小(要求按從小到大排列);
(3)若m+n≤2,且過原點(diǎn)存在兩條互相垂直的直線與曲線y=f(x)均相切,求y=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈[-2,0],已知函數(shù)f(x)=
x3-(a+5)x,x≤0
x3-
a+3
2
x2+ax,x>0

(Ⅰ) 證明f(x)在區(qū)間(-1,1)內(nèi)單調(diào)遞減,在區(qū)間(1,+∞)內(nèi)單調(diào)遞增;
(Ⅱ) 曲線y=f(x)在點(diǎn)Pi(xi,f(xi))(i=1,2,3)處的切線相互平行,且滿足x1<x2<x3(x1x2x3≠0),試求x2、x3、a所滿足的關(guān)系式;
(Ⅲ)在第(Ⅱ)問的條件下,證明x1+x2+x3>-
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案