在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)B在直線上運(yùn)動,過點(diǎn)B與l垂直的直線和AB的中垂線相交于點(diǎn)M.
(Ⅰ)求動點(diǎn)M的軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)P是軌跡E上的動點(diǎn),點(diǎn)R,N在y軸上,圓C:(x-1)2+y2=1內(nèi)切于△PRN,求△PRN的面積的最小值.
【答案】分析:(1)設(shè)點(diǎn)M的坐標(biāo)為(x,y),由題設(shè)知,|MB|=|MA|.根據(jù)拋物線的定義可知點(diǎn)M的軌跡為拋物線,根據(jù)焦點(diǎn)和準(zhǔn)線方程,則可得拋物線方程.
(2)設(shè)P(x,y),R(0,b),N(0,c),且b>c,則直線PR的方程可得,由題設(shè)知,圓心(1,0)到直線PR的距離為1,把x,y代入化簡整理可得(x-2)b2+2yb-x=0,同理可得(x-2)c2+2yc-x=0,進(jìn)而可知b,c為方程(x-2)x2+2yx-x=0的兩根,根據(jù)求根公式,可求得b-c,進(jìn)而可得△PRN的面積的表達(dá)式,根據(jù)均值不等式可知當(dāng)當(dāng)x=4時面積最小,進(jìn)而求得點(diǎn)P的坐標(biāo).
解答:解:(Ⅰ)設(shè)點(diǎn)M的坐標(biāo)為(x,y),由題設(shè)知,|MB|=|MA|.
所以動點(diǎn)M的軌跡E是以為焦點(diǎn),
為準(zhǔn)線的拋物線,其方程為y2=2x;
(Ⅱ)設(shè)P(x,y),R(0,b),N(0,c),且b>c,
故直線PR的方程為(y-b)x-xy+xb=0.
由題設(shè)知,圓心(1,0)到直線PR的距離為1,

注意到x>2,化簡上式,得(x-2)b2+2yb-x=0,
同理可得(x-2)c2+2yc-x=0.
由上可知,b,c為方程(x-2)x2+2yx-x=0的兩根,
根據(jù)求根公式,可得
故△PRN的面積為
,
等號當(dāng)且僅當(dāng)x=4時成立.此時點(diǎn)P的坐標(biāo)為
綜上所述,當(dāng)點(diǎn)P的坐標(biāo)為時,△PRN的面積取最小值8.
點(diǎn)評:本題主要考查了拋物線的標(biāo)準(zhǔn)方程和直線與拋物線的關(guān)系.直線與圓錐曲線的問題常涉及到圓錐曲線的性質(zhì)和直線的基本知識點(diǎn),如直線被圓錐曲線截得的弦長、弦中點(diǎn)問題,垂直問題,對稱問題.與圓錐曲線性質(zhì)有關(guān)的量的取值范圍等是近幾年命題的新趨向.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案