6.如圖3,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分別為AB,VA的中點.
(Ⅰ)求證:VB∥平面 M OC;
(Ⅱ)求證:平面MOC⊥平面VAB;
(Ⅲ)求三棱錐A-MOC的體積.

分析 (Ⅰ)利用三角形的中位線得出OM∥VB,利用線面平行的判定定理證明VB∥平面MOC;
(Ⅱ)證明OC⊥平面VAB,即可證明平面MOC⊥平面VAB;
(Ⅲ)利用等體積法求三棱錐A-MOC的體積即可.

解答 (Ⅰ)證明:∵O,M分別為AB,VA的中點,
∴OM∥VB,
∵VB?平面MOC,OM?平面MOC,
∴VB∥平面MOC;
(Ⅱ)證明:∵AC=BC,O為AB的中點,
∴OC⊥AB,
又∵平面VAB⊥平面ABC,平面ABC∩平面VAB=AB,且OC?平面ABC,
∴OC⊥平面VAB,
∵OC?平面MOC,
∴平面MOC⊥平面VAB;
(Ⅲ)解:在等腰直角三角形ACB中,AC=BC=$\sqrt{2}$,∴AB=2,OC=1,
∴等邊三角形VAB的邊長為2,S△VAB=$\sqrt{3}$,
∵O,M分別為AB,VA的中點.
∴${S}_{△AMO}=\frac{1}{4}{S}_{△VAB}=\frac{\sqrt{3}}{4}$.
又∵OC⊥平面VAB,
∴三棱錐${V}_{A-MOC}={V}_{C-MOA}=\frac{1}{3}×\frac{\sqrt{3}}{4}×1=\frac{\sqrt{3}}{12}$.

點評 本題考查線面平行的判定,考查平面與平面垂直的判定,考查體積的計算,正確運用線面平行、平面與平面垂直的判定定理是關(guān)鍵,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.Sn為等差數(shù)列{an}的前n項和,a1=2,S3=12,則a6=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若A∪{-1,1}={-1,1},則這樣的集合A共有4個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.曲線M的方程為$\sqrt{{{(x-1)}^2}+{y^2}}+\sqrt{{{(x+1)}^2}+{y^2}}$=4,直線y=k(x+1)交曲線M于A,B兩點,點C(1,0),則△ABC的周長為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.拋物線C:y2=2px(p>0)上點M(x,y)到準線的距離為x+2.
(I)求p的值;
(II)設過拋物線C焦點F的直線l交C的于A(x1,y1),B(x2,y2)兩點,求y1•y2值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{f(x-1)+1,x≥0}\end{array}\right.$,f(2015)=( 。
A.2015B.$\frac{4031}{2}$C.2016D.$\frac{4033}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知平面向量$\overrightarrow{AB}$=(1,2),$\overrightarrow{AC}$=(3,4),則向量$\overrightarrow{CB}$=( 。
A.(-4,-6)B.(4,6)C.(-2,-2)D.(2,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知定點A(2,4),拋物線y2=2x上有一動點B,點P為線段AB的中點,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若關(guān)于x的方程lnx+2=(a+1)x無解,則數(shù)實a的取值范圍為(e-1,+∞).

查看答案和解析>>

同步練習冊答案