如圖,三棱錐OABC中,設(shè)=a,=b=c,MN分別為OA、BC的中點,點GMN,且MGGN=2,若=x+y+z,則x,y,z分別等于( 。

A.,

B. ,,

C. ,,

D. ,

解析:=a,=(b+c)?,?

=-=xa+(y-b+(z-)c,?

=-=(-x)a-yb-zc,?

=2,?

-x=2x,-y=2(y-),-z=2(z-).?

x=,y=,z=.

答案:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD,則下列結(jié)論中不一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐P-ABC的頂點P在圓柱曲線O1O上,底面△ABC內(nèi)接于⊙O的直徑,且∠ABC=60°,O1O=AB=4,⊙O1上一點D在平面ABC上的射影E恰為劣弧AC的中點.
(1)設(shè)三棱錐P-ABC的體積為
3
3
,求證:DO⊥平面PAC;
(2)若⊙O上恰有一點F滿足DF⊥平面PAC,求二面角D-AC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三棱錐O-ABC中,OA=OB,AB=BC,∠ABC=60°.
(Ⅰ)證明:AB⊥OC;
(Ⅱ)若OA=AB=2,OC=
6
,求點O到面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三棱錐C-ABD中,AB=AD=BD=BC=CD=2,O為BD的中點,∠AOC=120°,P為AC上一點,Q為AO上一點,且
AP
PC
=
AQ
QO
=2

(Ⅰ)求證:PQ∥平面BCD;
(Ⅱ)求證:PO⊥平面ABD;
(Ⅲ)求BP與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐O—ABC中,OA⊥BC,OB⊥AC,求證:OC⊥AB.

查看答案和解析>>

同步練習冊答案