精英家教網 > 高中數學 > 題目詳情
19.已知雙曲線以△ABC的頂點B,C為焦點,且經過點A,若△ABC內角的對邊分別為a,b,c.且a=4,b=5,$c=\sqrt{21}$,則此雙曲線的離心率為( 。
A.$5-\sqrt{21}$B.$\frac{{\sqrt{21}+5}}{2}$C.$5+\sqrt{21}$D.$\frac{{5-\sqrt{21}}}{2}$

分析 由題意,2c′=4,2a′=5-$\sqrt{21}$,即可求出雙曲線的離心率.

解答 解:由題意,2c′=4,2a′=5-$\sqrt{21}$,
∴e=$\frac{4}{5-\sqrt{21}}$=5+$\sqrt{21}$,
故選C.

點評 本題考查雙曲線的定義與性質,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

9.設函數$f(x)=\left\{\begin{array}{l}-(x+3)(x-1),x≤a\\{2^x}-2\;\;\;\;\;\;\;\;\;\;\;\;,x>a.\end{array}\right.$
①若a=1,則f(x)的零點個數為2;
②若f(x)恰有1個零點,則實數a的取值范圍是(-∞,-3).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.一個四棱錐的三視圖如圖所示,這個四棱錐的體積為( 。
A.6B.8C.12D.24

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知函數$f(x)=\frac{x^2}{2e}-ax,g(x)=lnx-ax,a∈R$.
(1)解關于x(x∈R)的不等式f(x)≤0;
(2)證明:f(x)≥g(x);
(3)是否存在常數a,b,使得f(x)≥ax+b≥g(x)對任意的x>0恒成立?若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.某四棱錐的三視圖如圖所示,該四棱錐的四個側面的面積中最大的是( 。
A.3B.$2\sqrt{5}$C.6D.$3\sqrt{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知四棱錐P-ABCD的底面為平行四邊形,PD⊥平面ABCD,M在邊PC上
(Ⅰ)當M在邊PC上什么位置時,AP∥平面MBD?并給出證明.
(Ⅱ)在(Ⅰ)條件之下,若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.手機完全充滿電量,在開機不使用的狀態(tài)下,電池靠自身消耗一直到出現低電量警告之間所能維持的時間稱為手機的待機時間.為了解A,B兩個不同型號手機的待機時間,現從某賣場庫存手機中隨機抽取A,B兩個型號的手機各5臺,在相同條件下進行測試,統(tǒng)計結果如下:
手機編號12345
A型待機時間(h)120125122124124
B型待機時間(h)118123127120a
已知 A,B兩個型號被測試手機待機時間的平均值相等.
(Ⅰ)求a的值;
(Ⅱ)判斷A,B兩個型號被測試手機待機時間方差的大。ńY論不要求證明);
(Ⅲ)從被測試的手機中隨機抽取A,B型號手機各1臺,求至少有1臺的待機時間超過122小時的概率.
(注:n個數據x1,x2,…,xn的方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為數據x1,x2,…,xn的平均數)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知函數f(x)=lnx+ax,g(x)=ax2+2x,其中a為實數,e為自然對數的底數.
(1)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數y=f(x)的極大值為-2,求實數a的值;
(3)若a<0,且對任意的x∈[1,e],f(x)≤g(x)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.函數f(x)=$\sqrt{1-3x}$的定義域是(-∞,$\frac{1}{3}$].

查看答案和解析>>

同步練習冊答案