直線l經(jīng)過點P(1,1),且與圓:x2+y2-4x+6y-4=0相切,則直線l的方程是________.

x-4y+3=0
分析:把圓的方程化為標準方程后,找出圓心坐標和圓的半徑,設出直線l的方程為y-1=kx-k,然后利用點到直線的距離公式求出圓心到直線l的距離d,讓d等于圓的半徑列出關于k的方程,求出方程的解即可得到k的值,寫出直線l的方程即可.
解答:把圓方程化為標準方程得:(x-2)2+(y+3)2=17,
所以圓心坐標為(2,-3),圓的半徑r=,
由直線l過(1,1),當直線l的斜率不存在時,不合題意,
則設直線l的方程為y=kx-k+1,
因為直線l與已知圓相切,所以圓心到直線的距離d=
解得:k=,
則直線l的方程為:x-4y+3=0.
故答案為:x-4y+3=0.
點評:此題考查學生掌握直線與圓相切時所滿足的條件,靈活運用點到直線的距離公式化簡求值,注意題目的條件的應用,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ
(θ為參數(shù)),直線l經(jīng)過點P(1,1),傾斜角α=
π
6

(1)寫出直線l的參數(shù)方程;
(2)設l與圓圓C相交與兩點A,B,求點P到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過A(1,6),又經(jīng)過A(1,6)與B(5,-2)的中點,且圓心在直線4x-2y=0上.
(1)求圓C的圓心和半徑,并寫出圓C的方程;
(2)若直線l經(jīng)過點P(-1,3)且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l經(jīng)過點P(1,1),傾斜角α=
π
6
,設直線l與圓x2+y2=4相交于A,B兩點,則點P與A,B兩點的距離之積為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A:如圖所示,已知AB為⊙O的直徑,AC為弦,OD∥BC,交AC于點D,BC=4cm,
(1)試判斷OD與AC的關系;
(2)求OD的長;
(3)若2sinA-1=0,求⊙O的直徑.
B:(選修4-4)已知直線l經(jīng)過點P(1,1),傾斜角α=
4

(1)寫出直線l的參數(shù)方程;
(2)設l與圓x2+y2=4相交于兩點A、B,求點P到A、B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)請考生在第(1),(2),(3)題中任選一題作答,如果多做,則按所做的第一題記分.
(1)選修4-1:幾何證明選講
如圖,在△ABC中,D是AC的中點,E是BD的中點,AE的延長線交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面積為S1,四邊形CDEF的面積為S2,求S1:S2的值.
(2)選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點O為極點,a=
π
6
軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知直線l經(jīng)過點P(1,1),傾斜角a=
π
6

( I)寫出直線l的參數(shù)方程;
( II)設l與圓ρ=2相交于兩點A、B,求點P到A、B兩點的距離之積.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若關于x的不等式f(x)>a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案