已知橢圓的方程為,點(diǎn)P(a,b)的坐標(biāo)滿足,過(guò)點(diǎn)P的直線l與橢圓交于A、B兩點(diǎn),點(diǎn)Q為線段AB的中點(diǎn),求:
(Ⅰ)點(diǎn)Q的軌跡方程;
(Ⅱ)點(diǎn)Q的軌跡與坐標(biāo)軸的交點(diǎn)的個(gè)數(shù).
解:(Ⅰ)設(shè)點(diǎn)A、B的坐標(biāo)分別為,點(diǎn)Q的坐標(biāo)為Q(x,y),
當(dāng)時(shí),設(shè)直線l的斜率為k,則l的方程為y=k(x-a)+b,
由已知, (1)
,(2)
由(1)得, (3)
由(2)得, (4)
由(3)、(4)及,
得點(diǎn)Q的坐標(biāo)滿足方程, (5)
當(dāng)時(shí),k不存在,此時(shí)l平行于y軸,因此AB的中點(diǎn)Q一定落在x軸上,即Q的坐標(biāo)為(a,0)顯然點(diǎn)Q的坐標(biāo)滿足方程(5);
綜上所述,點(diǎn)Q的坐標(biāo)滿足方程,
設(shè)方程(5)所表示的曲線為L(zhǎng),
則由,
因?yàn)?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20111201/201112011536464531218.gif">,由已知
所以當(dāng)時(shí),△=0,曲線L與橢圓C有且只有一個(gè)交點(diǎn)P(a,b);
當(dāng)時(shí),△<0,曲線L與橢圓C沒有交點(diǎn),
因?yàn)椋?,0)在橢圓C內(nèi),又在曲線L上,
所以曲線L在橢圓C內(nèi),故點(diǎn)Q的軌跡方程為
(Ⅱ)由,解得曲線L與y軸交于點(diǎn)(0,0),(0,b);
,解得曲線L與x軸交于點(diǎn)(0,0),(a,0),
當(dāng)a=0,b=0,即點(diǎn)P(a,b)為原點(diǎn)時(shí),(a,0)、(0,b)與(0,0)重點(diǎn),曲線L與坐標(biāo)軸只有一個(gè)交點(diǎn)(0,0);
當(dāng)a=0且,即點(diǎn)P(a,b)不在橢圓C外且在除去原點(diǎn)的y軸上時(shí),點(diǎn)(a,0)與(0,0)重合,曲線L與坐標(biāo)軸有兩個(gè)交點(diǎn)(0,b)與(0,0);
同理,當(dāng)b=0且,即點(diǎn)P(a,b)不在橢圓C外且在除去原點(diǎn)的x軸上時(shí),曲線L與坐標(biāo)軸有兩個(gè)交點(diǎn)(a,0)與(0,0);
當(dāng),即點(diǎn)P(a,b)在橢圓C內(nèi)且不在坐標(biāo)軸上時(shí),曲線L與坐標(biāo)軸有三個(gè)交點(diǎn)(a,0)、(0,b)與(0,0)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的方程為,點(diǎn)的坐標(biāo)滿足過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn),點(diǎn)為線段的中點(diǎn),求:

                          

(1)點(diǎn)的軌跡方程;

(2)點(diǎn)的軌跡與坐標(biāo)軸的交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).

(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);

(2)設(shè)直線交橢圓、兩點(diǎn),交直線于點(diǎn).若,證明:的中點(diǎn);

(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫出求作點(diǎn)的步驟,并求出使、存在的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).

(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);

(2)設(shè)直線交橢圓、兩點(diǎn),交直線于點(diǎn).若,證明:的中點(diǎn);

(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫出求作點(diǎn)的步驟,并求出使存在的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).

(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);

(2)設(shè)直線交橢圓、兩點(diǎn),交直線于點(diǎn).若,證明:的中點(diǎn);

(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫出求作點(diǎn)、的步驟,并求出使、存在的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省聊城市高二第四次模塊檢測(cè)理科數(shù)學(xué)卷(解析版) 題型:解答題

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).

(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);

(2)設(shè)直線交橢圓、兩點(diǎn),交直線于點(diǎn).若,證明:的中點(diǎn);

(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫出求作點(diǎn)的步驟,并求出使、存在的θ的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案