【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

10

女生

20

合計(jì)

已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為

(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;

(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說(shuō)明你的理由;

(3)已知在被調(diào)查的學(xué)生中有5名來(lái)自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

【答案】(1)列聯(lián)表見(jiàn)解析;(2)的把握認(rèn)為喜歡游泳與性別有關(guān);(3.

【解析】

試題分析:(1)根據(jù)題意完成列聯(lián)表;(2)根據(jù)給出的公式求出相關(guān)系數(shù)的值,對(duì)比臨界值表,若,則有的把握認(rèn)為喜歡游泳與性別有關(guān),否則無(wú)關(guān);(3名學(xué)生中喜歡游泳的名學(xué)生記為,另外名學(xué)生記為,任取名學(xué)生,列出所有可能情況,從中找出從這名學(xué)生中隨機(jī)抽取人,恰好有人喜歡游泳的情況,作比即得所求的概率.

試題解析:(1)因?yàn)樵?00人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為,

所以喜歡游泳的學(xué)生人數(shù)為人...................1分

其中女生有20人,則男生有40人,列聯(lián)表補(bǔ)充如下:

喜歡游泳

不喜歡游泳

合計(jì)

男生

40

10

50

女生

20

30

50

合計(jì)

60

40

100

................................................4分

因?yàn)?/span>................... 7分

所以有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)......................8分

(2)5名學(xué)生中喜歡游泳的3名學(xué)生記為,另外2名學(xué)生記為1,2,任取2名學(xué)生,則所有可能情況為,共10種.........10分

其中恰有1人喜歡游泳的可能情況為,共6種........... 11分

所以,恰好有1人喜歡游泳的概率為............12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證: ;

(2)當(dāng)時(shí),求函數(shù)的最小值;

(3)若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒(méi)有將;某顧客從此10張券中任取2張,求:

1)該顧客中獎(jiǎng)的概率;

2)該顧客獲得的獎(jiǎng)品總價(jià)值(元)的概率分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司試銷一種成本單價(jià)為500元/件的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(jià)(元/件)可近似看作一次函數(shù)的關(guān)系(如圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)成本總價(jià))為元. 試用銷售單價(jià)表示毛利潤(rùn)并求銷售單價(jià)定為多少時(shí),該公司獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,以原點(diǎn)為圓心的兩個(gè)同心圓,其中,大圓的半徑為 ,小圓的半徑為,點(diǎn)為大圓上一動(dòng)點(diǎn),連接,與小圓交于點(diǎn),過(guò)點(diǎn)軸的垂線,垂足為,過(guò)點(diǎn)作直線的垂線,垂足為,點(diǎn),記.

(1)求點(diǎn)的坐標(biāo)(用含有的式子表示),并寫出點(diǎn)的軌跡方程,指出點(diǎn)的軌跡是什么曲線;

(2)設(shè)點(diǎn)的軌跡為,點(diǎn)分別是曲線上的兩個(gè)動(dòng)點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為參加學(xué)校的“我愛(ài)古詩(shī)詞”知識(shí)競(jìng)賽,小王所在班級(jí)組織了一次古詩(shī)詞知識(shí)測(cè)試,并將全班同學(xué)的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),以下是根據(jù)這次測(cè)試成績(jī)制作的不完整的頻率分布表和頻率分布直方圖.

請(qǐng)根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問(wèn)題:

(1)求出的值;

(2)老師說(shuō):“小王的測(cè)試成績(jī)是全班同學(xué)成績(jī)的中位數(shù)”,那么小王的測(cè)試成績(jī)?cè)谑裁捶秶鷥?nèi)?

(3)若要從小明、小敏等五位成績(jī)優(yōu)秀的同學(xué)中隨機(jī)選取兩位參加競(jìng)賽,請(qǐng)用:列表法或樹狀圖求出小明、小敏同時(shí)被選中的概率.(注:五位同學(xué)請(qǐng)用表示,其中小明為,小敏為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

等腰梯形ABEF中,ABEF,AB=2,ADAF=1,AFBFOAB的中點(diǎn),矩形ABCD 所在的平面和平面ABEF互相垂直.

(1)求證:AF⊥平面CBF;

(2)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF;

(3)求三棱錐CBEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù).

(1)求定義域;

(2)判斷的奇偶性,并說(shuō)明理由;

(3)求使的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為招聘新員工設(shè)計(jì)了一個(gè)面試方案:應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,按題目要求獨(dú)立完成.規(guī)定:至少正確完成其中2道題的便可通過(guò).已知6道備選題中應(yīng)聘者甲有4道題能正確完成,2道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.

(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列及數(shù)學(xué)期望;

(2)請(qǐng)分析比較甲、乙兩人誰(shuí)面試通過(guò)的可能性大?

查看答案和解析>>

同步練習(xí)冊(cè)答案