如圖,在直三棱柱ABC-A1B1C1中,AB=AC=5,D,E分別為BC,BB1的中點(diǎn),四邊形B1BCC1是邊長為6的正方形.

(1)求證:CE⊥平面AC1D;

(2)求二面角C-AC1-D的余弦值.

答案:
解析:

  (1)證明:在直三棱柱中,

  平面,又平面,所以

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4632/0020/b88376fd24f66b2501f1627aa348fde5/C/Image242.gif" width=65 HEIGHT=18>,中點(diǎn),所以.又

  所以平面

  又平面,所以

  因?yàn)樗倪呅?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4632/0020/b88376fd24f66b2501f1627aa348fde5/C/Image251.gif" width=53 HEIGHT=24>為正方形,,分別為,的中點(diǎn),

  所以

  所以

  所以.又,

  所以平面. 6

  (2)解:如圖,以的中點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系.則

  由(Ⅱ)知平面,所以為平面的一個法向量.

  設(shè)為平面的一個法向量,

  ,

  由可得

  令,則

  所以.從而

  因?yàn)槎娼?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4632/0020/b88376fd24f66b2501f1627aa348fde5/C/Image286.gif" width=82 HEIGHT=24>為銳角,

  所以二面角的余弦值為. 12


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊答案