已知

(Ⅰ)求函數(shù)圖象的對稱中心的橫坐標(biāo);

(Ⅱ)若,求函數(shù)的值域。

 

【答案】

(1)對稱中心的橫坐標(biāo)為;

(Ⅱ)函數(shù)。

【解析】

試題分析: (1)由,化為單一函數(shù)得到對稱中心的橫坐標(biāo)的值。

(2)由     ,借助于正弦函數(shù)的圖像和性質(zhì)得到值域。

(1) ……2分

  ………………4分

   …………6分

對稱中心的橫坐標(biāo)為  ………………8分

(Ⅱ)由    

  ………………10分

∴函數(shù)   ………………12分

考點(diǎn):本題主要考查了向量的數(shù)量積公式以及三角函數(shù)性質(zhì)的運(yùn)用。

點(diǎn)評:解決該試題的關(guān)鍵是將函數(shù)化為單一三角函數(shù),要準(zhǔn)確的運(yùn)用二倍角公式變形得到,同時(shí)要熟練運(yùn)用三角函數(shù)的性質(zhì)得到對稱中心的坐標(biāo)和值域問題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
3
x3-
1
2
x2-x+1
,x∈R
(1)求函數(shù)f(x)的極大值和極小值;
(2)已知x∈R,求函數(shù)f(sinx)的最大值和最小值.
(3)若函數(shù)g(x)=f(x)+a的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省四地六校聯(lián)考高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知
(1)求函數(shù)y=f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來的,把所得到的圖象再向右平移單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省泰州市姜堰市蔣垛中學(xué)高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=,x∈R
(1)求函數(shù)f(x)的極大值和極小值;
(2)已知x∈R,求函數(shù)f(sinx)的最大值和最小值.
(3)若函數(shù)g(x)=f(x)+a的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省四地六校聯(lián)考高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知
(1)求函數(shù)y=f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來的,把所得到的圖象再向右平移單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省泰州市姜堰市高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=,x∈R
(1)求函數(shù)f(x)的極大值和極小值;
(2)已知x∈R,求函數(shù)f(sinx)的最大值和最小值.
(3)若函數(shù)g(x)=f(x)+a的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案