分析 (1)根據(jù)等差數(shù)列性質及前n項和公式聯(lián)立方程組求得a1和d,利用等差數(shù)列通項公式即可求得{an}的通項公式;
(2)由${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂項法”即可求得數(shù)列{bn}前n項和Tn.
解答 解:(1)∵{an}是等差數(shù)列,a2+a8=14,2a1+6d=14,①
S5=25,即5a1+10d=25,②
∴聯(lián)立解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$,…(3分)
∴{an}的通項公式an=a1+(n-1)d=2n-1,
∴an=2n-1;…(5分)
(2)由(1)知${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,…(7分)
∴${T_n}={b_1}+{b_2}+{b_3}+…+{b_n}=\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$,
=$\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$,
數(shù)列{bn}前n項和Tn,Tn=$\frac{n}{2n+1}$.…(12分)
點評 本題考查等差數(shù)列的性質,等差數(shù)列前n項和公式,考查“裂項法”求數(shù)列的前n項和公式,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{11}{8}$ | D. | $-\frac{5}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com