已知f(x)=2x+1,(x∈R),若|f(x)-3|<a的充分條件是|x-1|<b,(a,b>0),則a,b之間的關系是________.


分析:先分別求解不等式|f(x)-3|<a,|x-1|<b,利用|f(x)-3|<a的充分條件是|x-1|<b,可知,從而可求a,b之間的關系.
解答:由題意,|f(x)-3|<a的解集為,|x-1|<b的解集為(1-b,1+b)
∵|f(x)-3|<a的充分條件是|x-1|<b,


故答案為:
點評:本題是以不等關系、充要條件為依托,求集合的包含關系的基礎題,也是高考常會考的題型.要正確判斷兩個集合間包含的關系,必須對集合的相關概念有深刻的理解,善于抓住代表元素,認清集合的特征.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義函數(shù)y=f(x),x∈D,若存在常數(shù)C,對任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,則稱函數(shù)f(x)在D上的幾何平均數(shù)為C.已知f(x)=2x,x∈[1,2],則函數(shù)f(x)=2x在[1,2]上的幾何平均數(shù)為( 。
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2x可以表示成一個奇函數(shù)g(x)與一個偶函數(shù)h(x)之和,若關于x的不等式ag(x)+h(2x)≥0對于x∈[1,2]恒成立,則實數(shù)a的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)選修4-5:不等式選講
已知f(x)=|2x-1|+ax-5(a是常數(shù),a∈R)
(Ⅰ)當a=1時求不等式f(x)≥0的解集.
(Ⅱ)如果函數(shù)y=f(x)恰有兩個不同的零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2x+3,g(x)=4x-5,則使得f(h(x))=g(x)成立的h(x)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•普陀區(qū)一模)已知f(x)=2x+x,則f-1(6)=
2
2

查看答案和解析>>

同步練習冊答案