(1)求證在區(qū)間(0,a]上是單調(diào)遞減函數(shù).

(2)證明函數(shù)R上是增函數(shù).

答案:略
解析:

(1)證明:任取

又∵

f(x)(0,a]上是單調(diào)遞減函數(shù).

(2)證明:,則,

,

,

R上是增函數(shù).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在區(qū)間[x1,x2]上的函數(shù)y=f(x)的圖象為C,M是C上的任意一點,O為坐標(biāo)原點,設(shè)向
OA
=(x1,f(x1)),
OB
=(x2,  f(x2))
,
OM
=(x,y),當(dāng)實數(shù)λ滿足x=λ x1+(1-λ) x2時,記向量
ON
OA
+(1-λ)
OB
.定義“函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”是指“|
MN
|≤
k恒成立”,其中k是一個確定的正數(shù).
(1)設(shè)函數(shù) f(x)=x2在區(qū)間[0,1]上可在標(biāo)準(zhǔn)k下線性近似,求k的取值范圍;
(2)求證:函數(shù)g(x)=lnx在區(qū)間[em,em+1](m∈R)上可在標(biāo)準(zhǔn)k=
1
8
下線性近似.
(參考數(shù)據(jù):e=2.718,ln(e-1)=0.541)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=x2(2ax-3),其中a為常數(shù).
( I)若a≥0,求證:函數(shù)f(x)在區(qū)間(-∞,0)上是增函數(shù);
( II)若函數(shù)g(x)=g(x)+f′(x),x∈[0,1],在x=0處取得最大值,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

(1)求證在區(qū)間(0,a]上是單調(diào)遞減函數(shù).

(2)證明函數(shù)R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點線·數(shù)學(xué)(學(xué)生用書) 題型:044

已知函數(shù)f(x)=x3-ax+1定義在區(qū)間[0,1]上

(1)若a=2,求證:對于x1,x2∈[0,1]且x1≠x2,有|f(x1)-f(x2)|<2|x1-x2|;

(2)是否存在實數(shù)a,使f(x)在區(qū)間[0,]上為減函數(shù),且在區(qū)間(,1]上是增函數(shù)?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案