(2003•朝陽區(qū)一模)直線ax+by+1=0被圓x2+y2=25截得的弦長為8,則a2+b2的值為
1
9
1
9
分析:由圓方程找出圓心坐標(biāo)與半徑,利用點到直線的距離公式表示出圓心到已知直線的距離d,利用垂徑定理以及勾股定理,根據(jù)已知的弦長列出關(guān)系式,即可求出所求式子的值.
解答:解:由圓的方程得:圓心(0,0),半徑r=5,
∵圓心到直線ax+by+1=0的距離d=
1
a2+b2
,弦長為8,
∴2
r2-d2
=8,即25-
1
a2+b2
=16,
解得:a2+b2=
1
9

故答案為:
1
9
點評:此題考查了直線與圓相交的性質(zhì),涉及的知識有:點到直線的距離公式,垂徑定理,勾股定理,熟練掌握公式及定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2003•朝陽區(qū)一模)復(fù)數(shù)
5
1+2i
的共軛復(fù)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•朝陽區(qū)一模)若a>b>0,集合M={x|b<x<
a+b
2
},N={x|
ab
<x<a
},則M∩N表示的集合為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•朝陽區(qū)一模)設(shè)a、b、c為三條不同的直線,α、β、γ為三個不同的平面,下面四個命題中真命題的個數(shù)是( 。
(1)若α⊥β,β⊥γ,則α∥β.
(2)若a⊥b,b⊥c,則a∥c或a⊥c.
(3)若a?α,b、c?β,a⊥b,a⊥c,則α⊥β.
(4)若a⊥α,b?β,a∥b,則α⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•朝陽區(qū)一模)函數(shù)y=arcsin(sinx)的圖象是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•朝陽區(qū)一模)圓周上有12個不同的點,過其中任意兩點作弦,這些弦在圓內(nèi)的交點個數(shù)最多是( 。

查看答案和解析>>

同步練習(xí)冊答案