函數(shù)f(x)=3sin(2x-
π
3
)
的圖象為C,
①圖象C關(guān)于直線x=
11π
12
對稱;
②函數(shù)在區(qū)間(-
π
12
12
)
內(nèi)是增函數(shù);
③由y=3sinx的圖象向右平移
π
3
個單位長度可以得到圖象C
以上三個論斷中,正確論斷的個數(shù)是( 。
分析:由于當x=
11π
12
時,函數(shù)f(x)取得最小值-3,故①正確.令 2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,k∈z,求得x的范圍,即可求得函數(shù)的增區(qū)間,發(fā)現(xiàn)②正確.把 y=3sinx的圖象向右平移
π
3
個單位長度可以得到的圖象對應(yīng)的函數(shù)解析式為 y=3sin(x-
π
3
),故③不正確.
解答:解:由于當x=
11π
12
時,函數(shù)f(x)取得最小值-3,故①圖象C 關(guān)于直線x=
11π
12
對稱正確.
令 2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,k∈z,可得 kπ-
π
12
≤x≤kπ+
12
,k∈z,故函數(shù)的增區(qū)間為[kπ-
π
12
,kπ+
12
],k∈z,故②正確.
把 y=3sinx的圖象向右平移
π
3
個單位長度可以得到的圖象對應(yīng)的函數(shù)解析式為 y=3sin(x-
π
3
),故③不正確.
故選C.
點評:本題主要考查正弦函數(shù)的對稱性和單調(diào)性,y=Asin(ωx+∅)的圖象變換規(guī)律,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
3
sin(x+φ)-cos(x+φ)(0<φ<π)
為奇函數(shù),則φ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3sin(2x+
π4
)

(1)求函數(shù)f(x)圖象的對稱軸;
(2)求函數(shù)f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①冪函數(shù)都具有奇偶性; 
②命題P:?x0∈[-1,1],滿足x02+x0+1>a,使命題P為真的實數(shù)a的取值范圍為a<3;
③代數(shù)式sinα+sin(
3
+α)+sin(
3
+α)
的值與角a有關(guān);
④將函數(shù)f(x)=3sin(2x-
π
3
)
的圖象向左平移
π
3
個單位長度后得到的圖象所對應(yīng)的函數(shù)是奇函數(shù); 
⑤已知數(shù)列{an}滿足:a1=m,a2=n,an+2=an+1-an(n∈N),記Sn=a1+a2+…an,則S2011=m;
其中正確的命題的序號是
②⑤
②⑤
  (請把正確命題的序號全部寫出來)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin(ωx+φ)
-cos(ωx+φ)(ω>0,0<φ<π)為奇函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
π
2

(1)求出φ的值,寫出f(x)的解析式;  (2)設(shè)a,b,c為△ABC的三個內(nèi)角A,B,C所對的邊,若sinA=
2
2
3
,f(
B
2
)=1,b=1
,求邊長a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•淄博二模)已知函數(shù)f(x)=
3
sinωx•cosωx+cos2ωx-
1
2
(ω>0)
,其最小正周期為
π
2

(I)求f(x)的表達式;
(II)將函數(shù)f(x)的圖象向右平移
π
8
個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,
π
2
]
上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案