2.定義在R上的函數(shù)f(x)的圖象關(guān)于直線x=2對稱,且f(x)滿足:對任意的x1,x2∈(-∞,2](x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,且f(4)=0,則關(guān)于x不等式$\frac{f(x)}{x}<0$的解集是( 。
A.(-∞,0)∪(4,+∞)B.(0,2)∪(4,+∞)C.(-∞,0)∪(0,4)D.(0,2)∪(2,4)

分析 由已知可得函數(shù)f(x)在(-∞,2]上為減函數(shù),且f(4)=0,結(jié)合函數(shù)f(x)的圖象關(guān)于直線x=2對稱,可得:f(x)在[2,+∞)上為增函數(shù),且f(0)=0,分類討論可得答案.

解答 解:∵對任意的x1,x2∈(-∞,2](x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,
∴函數(shù)f(x)在(-∞,2]上為減函數(shù),且f(4)=0,
又由函數(shù)f(x)的圖象關(guān)于直線x=2對稱,
∴f(x)在[2,+∞)上為增函數(shù),且f(0)=0,
當(dāng)x∈(-∞,0),f(x)>0,滿足$\frac{f(x)}{x}<0$,
當(dāng)x∈(0,4),f(x)<0,滿足$\frac{f(x)}{x}<0$,
當(dāng)x∈(4,+∞),f(x)<0,不滿足$\frac{f(x)}{x}<0$,
綜上可得:x∈(-∞,0)∪(0,4),
故選:C.

點評 本題考查的知識點是抽象函數(shù)的應(yīng)用,函數(shù)的單調(diào)性,函數(shù)的對稱性,函數(shù)的零點,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在函數(shù)y=sin|x|、y=|sinx|、y=sin(2x+$\frac{2π}{3}$)、y=tan(2x+$\frac{2π}{3}$)中,最小正周期為π的函數(shù)的個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在區(qū)間[0,1]中隨機取出兩個數(shù),則兩數(shù)之和不小于$\frac{4}{5}$的概率是( 。
A.$\frac{8}{25}$B.$\frac{9}{25}$C.$\frac{18}{25}$D.$\frac{17}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.①“?x∈R,x2-3x+3=0”的否定是真命題;
②“$-\frac{1}{2}<x<0$”是“2x2-5x-3<0”必要不充分條件;
③“若xy=0,則x,y中至少有一個為0”的否命題是真命題;
④曲線$\frac{x^2}{25}+\frac{y^2}{9}=1$與曲線$\frac{x^2}{25-k}+\frac{y^2}{9-k}=1(9<k<25)$有相同的焦點;
⑤過點(1,3)且與拋物線y2=4x相切的直線有且只有一條.
其中是真命題的有:①③④(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=(x-a)•(x-b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=logax+b的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某學(xué)校甲、乙兩個班各派10名同學(xué)參加英語口語比賽,并記錄他們的成績,得到如圖所示的莖葉圖.現(xiàn)擬定在各班中分數(shù)超過本班平均分的同學(xué)為“口語王”.
(1)記甲班“口語王”人數(shù)為m,乙班“口語王”人數(shù)為n,則m,n的大小關(guān)系是m<n.
(2)甲班10名同學(xué)口語成績的方差為86.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z=lgm+(lgn)i,其中i是虛數(shù)單位.若復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在直線y=-x上,則mn的值等于( 。
A.0B.1C.10D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等差數(shù)列{an}的前n項和為Sn,若a2=1,a3=2,則S4=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-1-x-ax2
(Ⅰ)當(dāng)a=0時,求證:f(x)≥0;
(Ⅱ)當(dāng)x≥0時,若不等式f(x)≥0恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若x>0,證明(ex-1)ln(x+1)>x2

查看答案和解析>>

同步練習(xí)冊答案