已知橢圓的離心率為,長軸長為,直線交橢圓于不同的兩點A、B.
(1)求橢圓的方程;
(2)求的值(O點為坐標原點);
(3)若坐標原點O到直線的距離為,求面積的最大值.
(1)    (2)    
(3)
當|AB最大時,的面積最大值  
(1)依題意得,所以.橢圓方程為
(2)直線方程與橢圓方程聯(lián)立,保證,求出,利用,可得
(3)由原點O到直線的距離為.直線方程與橢圓方程聯(lián)立,保證,求出,利用,可得
利用不等式求出最值.注意的討論.
解:(1)設(shè)橢圓的半焦距為c,依題意 解得
2分
所求橢圓方程為  3分
(2)  設(shè),其坐標滿足方程
消去并整理得   4分
則有,      6分
       
  8分
(3)由已知,可得    9分
代入橢圓方程,
整理得

 10分

 11分
   12分
當且僅當,即時等號成立,經(jīng)檢驗,滿足(*)式
時,
綜上可知               13分
當|AB最大時,的面積最大值   14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系xOy中, 點A為橢圓E:)的左頂點, B,C在橢圓E上,若四邊形OABC為平行四邊形,且∠OAB=30°,則橢圓E的離心率等于       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

動點A到定點的距離的和為4,則動點A的軌跡為 (     )
A.橢圓B.線段C.無圖形D.兩條射線;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.

(Ⅰ)求橢圓M的標準方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個不同的交點與矩形ABCD有兩個不同的交點.求的最大值及取得最大值時m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足(1)求橢圓C的方程;
(2)是否存在直線,當直線交橢圓于P、Q兩點時,使點F恰為的垂心(三角形三條高的交點)?若存在,求出直線方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓方程為
(1)求圓心軌跡的參數(shù)方程和普通方程;
(2)點是(1)中曲線上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)是橢圓的兩個焦點,是橢圓上的動點(不能重合于長軸的兩端點),的內(nèi)心,直線軸于點,則       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓的左右焦點分別為,線段被拋物線的焦點內(nèi)分成了的兩段.
(1)求橢圓的離心率;
(2)過點的直線交橢圓于不同兩點,且,當的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的兩焦點之間的距離為        (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案