分析 由正弦函數(shù)的奇偶性即可判斷則y=sin2x奇函數(shù),故①錯誤; 由y=sin2x的最小正周期為T=$\frac{2π}{ω}$=π,故②正確;當x=0時,y=ln(x+1)=0,故函數(shù)存在零點,故③錯誤; 函數(shù)y=ln(x+1)在區(qū)間(-1,+∞)上單調(diào)遞增,故函數(shù)y=ln(x+1)在區(qū)間(-1,0)上是增函數(shù),④正確,即可求得答案.
解答 解:由正弦函數(shù)的性質(zhì)可知:f(x)=y=sin2x,則f(-x)=sin(-2x)=-sin2x=-f(x),則y=sin2x奇函數(shù),故①錯誤;
由y=sin2x的最小正周期為T=$\frac{2π}{ω}$=π,故②正確;
令函數(shù)y=ln(x+1)=0,即x+1=1,x=0,函數(shù)存在零點,故③錯誤;
由對數(shù)函數(shù)的單調(diào)性可知:函數(shù)y=ln(x+1)在區(qū)間(-1,+∞)上單調(diào)遞增,
故函數(shù)y=ln(x+1)在區(qū)間(-1,0)上是增函數(shù),④正確.
故答案為:②④
點評 本題考查正弦函數(shù)的性質(zhì),考查對數(shù)函數(shù)的單調(diào)性即零點存在定義,考查計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
商品名稱 | A | B | C | D | E |
銷售額x(千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(百萬元) | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 不存在 | B. | 不能確定 | C. | 一個 | D. | 兩個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com