分析 由$\frac{π}{3}$≤x≤$\frac{2π}{3}$可得cosx∈[-$\frac{1}{2}$,$\frac{1}{2}$],化簡可得y=-(cosx-1)2+2,由二次函數(shù)區(qū)間的最值可得.
解答 解:∵$\frac{π}{3}$≤x≤$\frac{2π}{3}$,∴cosx∈[-$\frac{1}{2}$,$\frac{1}{2}$],
∵y=sin2x+2cosx=-cos2x+2cosx+1
=-(cosx-1)2+2,
由二次函數(shù)區(qū)間的最值可得當(dāng)cosx=-1時(shí),
函數(shù)取最小值-2
故答案為:-2
點(diǎn)評 本題考查三角函數(shù)的最值,涉及二次函數(shù)區(qū)間的最值,屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,1)∪(1,+∞) | C. | (1,+∞) | D. | (-∞,-1)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com