分析 (1)利用函數(shù)的奇偶性的定義,直接求解函數(shù)的解析式即可.
(2)利用分段函數(shù)列出不等式求解即可.
解答 解:(1)當(dāng)x>0時(shí),-x<0,f(-x)=x-1-----------(2分)
∵函數(shù)f(x)是定義域?yàn)榈钠婧瘮?shù).
∴f(x)=-f(-x)=1-x------------(4分)
∴f(x)=$\left\{\begin{array}{l}{-x-1(x<0)}\\{1-x(x>0)}\end{array}\right.$------------(6分)
(2)∵f(x)>0
∴$\left\{\begin{array}{l}{-x-1>0}\\{x<0}\end{array}\right.$或$\left\{\begin{array}{l}{1-x>0}\\{x>0}\end{array}\right.$-------(9分)
解得:x<-1或0<x<1------------(11分)
故不等式的解集為:(-∞,-1)∪(0,1).----------(12分)
點(diǎn)評(píng) 本題考查函數(shù)的解析式的求法,函數(shù)的奇偶性以及分段函數(shù)的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 11 | C. | 10 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2] | B. | (1,2) | C. | (2,3] | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∧(¬q) | C. | p∨q | D. | (¬p)∨q |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com