已知a>1,函數(shù)f(x)=loga(x2-ax+2)在x∈[2,+∞)時的值恒為正.
(1)a的取值范圍;
(2)記(1)中a的取值范圍為集合A,函數(shù)g(x)=log2(tx2+2x-2)的定義域為集合B.若A∩B≠∅,求實數(shù)t的取值范圍.
【答案】分析:(1)欲使x2-ax+2>1在x∈[2,+∞)時恒成立,轉(zhuǎn)化成在x∈[2,+∞)時恒成立,根據(jù)
函數(shù)在[2,+∞)上的單調(diào)性求出最小值即可,使a小于最小值即可,注意條件a>1;
(2)先求出集合A,表示出集合B,根據(jù)A∩B≠∅,得不等式tx2+2x-2>0有屬于A的解,即有屬于A的解,根據(jù)二次函數(shù)的性質(zhì)求出的值域,即可求出t的范圍.
解答:解:(1)x2-ax+2>1在x∈[2,+∞)時恒成立.即在x∈[2,+∞)時恒成立.
又函數(shù)在[2,+∞)上是增函數(shù),
所以
從而.(6分)
(2)A=,B={x|tx2+2x-2>0}.
由于A∩B≠∅,
所以不等式tx2+2x-2>0有屬于A的解,
有屬于A的解.(8分)
時,,
所以=
.(12分)
點評:本題主要考查了二次函數(shù)恒成立問題,以及函數(shù)的單調(diào)性等有關(guān)基礎(chǔ)知識,同時考查了分析問題解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,函數(shù)f(x)=loga(x2-ax+2)在x∈[2,+∞)時的值恒為正.
(1)a的取值范圍;
(2)記(1)中a的取值范圍為集合A,函數(shù)g(x)=log2(tx2+2x-2)的定義域為集合B.若A∩B≠∅,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•嘉定區(qū)三模)已知a>1,函數(shù)f(x)的圖象與函數(shù)y=ax-1的圖象關(guān)于直線y=x對稱,g(x)=loga(x2-2x+2).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間[m,n](n>m>-1)上的值域為[loga
p
m
 , loga
p
n
]
,求實數(shù)p的取值范圍;
(3)設(shè)函數(shù)F(x)=af(x)-g(x),若w≥F(x)對一切x∈(-1,+∞)恒成立,求實數(shù)w的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市嘉定區(qū)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知a>1,函數(shù)f(x)的圖象與函數(shù)y=ax-1的圖象關(guān)于直線y=x對稱,g(x)=loga(x2-2x+2).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間[m,n](n>m>-1)上的值域為,求實數(shù)p的取值范圍;
(3)設(shè)函數(shù)F(x)=af(x)-g(x),若w≥F(x)對一切x∈(-1,+∞)恒成立,求實數(shù)w的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a>1,函數(shù)f(x)=loga(x2-ax+2)在x∈[2,+∞)時的值恒為正.
(1)a的取值范圍;
(2)記(1)中a的取值范圍為集合A,函數(shù)g(x)=log2(tx2+2x-2)的定義域為集合B.若A∩B≠∅,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案