實數(shù)a∈[-1,1],b∈[0,2].設(shè)函數(shù)f(x)=-
1
3
x3+
1
2
ax2+bx
的兩個極值點為x1,x2,現(xiàn)向點(a,b)所在平面區(qū)域投擲一個飛鏢,則飛鏢恰好落入使x1≤-1且x2≥1的區(qū)域的概率為( 。
A.
1
2
B.
1
3
C.
1
4
D.
1
5
f(x)=-
1
3
x3+
1
2
ax2+bx

∴f'(x)=-x2+ax+b的兩個零點為x1,x2,
∵x1≤-1且x2≥1
f′(-1)=-1-a+b≥0
f′(1)=-1+a+b≥0

在條件實數(shù)a∈[-1,1],b∈[0,2]下畫出滿足上面不等式的圖形如右圖中陰影部分.
其面積為1,a∈[-1,1],b∈[0,2]圍成圖形的面積為4
∴現(xiàn)向點(a,b)所在平面區(qū)域投擲一個飛鏢,則飛鏢恰好落入使x1≤-1且x2≥1的區(qū)域的概率為
1
4

故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-3x.
(1)求曲線y=f(x)在點M(2,2)處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)的極值(要列出表格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線y=x3+x-2在點P0處的切線l1平行直線4x-y-1=0,且點P0在第三象限,
(1)求P0的坐標(biāo);
(2)若直線l⊥l1,且l也過切點P0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在曲線y=x2上切線斜率為1的點是(  )
A.(0,0)B.(
1
2
,
1
4
)
C.(
1
4
,
1
16
)
D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1處有極值0,則a+b=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=1nx-
1
2
ax2
-2x
(1)若函數(shù)f(x)在x=2處取得極值,求實數(shù)a的值;
(2)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(3)若a=-
1
2
時,關(guān)于x的方程f(x)=-
1
2
x+b在[1,4]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=x3-3x2
(1)求函數(shù)的極小值;
(2)求函數(shù)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面向量
a
=(
3
,-1)
b
=(
1
2
,
3
2
)
,
(1)證明:
a
b

(2)若存在不同時為零的實數(shù)k和g,使
x
=
a
+(g2-3)
b
y
=-k
a
+g
b
,且
x
y
,試求函數(shù)關(guān)系式k=f(g);
(3)椐(2)的結(jié)論,討論關(guān)于g的方程f(g)-k=0的解的情況.

查看答案和解析>>

同步練習(xí)冊答案