【題目】過拋物線的焦點的直線與拋物線交于兩點,若且中點的縱坐標(biāo)為3.
(Ⅰ)求的值;
(Ⅱ)過點的直線交拋物線于不同兩點,分別過點、點分別作拋物線的切線,所得的兩條切線相交于點.求的面積的最小值及此時的直線的方程.
【答案】(Ⅰ)(Ⅱ)最小值,此時直線方程為.
【解析】
(Ⅰ)設(shè),將直線方程代入拋物線的方程,結(jié)合韋達(dá)定理及過焦點的弦長公式;
(Ⅱ)設(shè),利用導(dǎo)數(shù)可得的方程,聯(lián)立方程即可求出點的坐標(biāo),利用弦長公式,可得,運用點到直線的距離公式可得點到直線的距離,進(jìn)而得到的面積的表達(dá)式,根據(jù)函數(shù)的性質(zhì)即可求出其最小值以及直線方程.
(Ⅰ)設(shè),
且,
,
則拋物線方程為,拋物線焦點為,
依題意,直線與拋物線交于兩點,
故其斜率存在,設(shè),
由消得恒成立,
,
,
,
.
(Ⅱ)設(shè),
由得,
,
直線的方程為,
即,①
同理直線的方程為,②
設(shè)過點的直線方程為,
由消得,
,
由①-②得,
而,故有,
由①+②得,
即點,
,
點到直線的距離,
,
,
當(dāng),即時,有最小值,
此時直線方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x﹣1|.
(1)若f(x)≥|m﹣1|恒成立,求實數(shù)m的最大值M;
(2)在(1)成立的條件下,正實數(shù)a,b滿足a2+b2=M,證明:a+b≥2ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,已知過點且斜率為1的直線與曲線:(是參數(shù))交于兩點,與直線:交于點.
(1)求曲線的普通方程與直線的直角坐標(biāo)方程;
(2)若的中點為,比較與的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若, 求使方程有唯一解的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的右焦點為,過點且垂直于軸的弦長為3,直線與圓相切,且與橢圓交于,兩點,為橢圓的右頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)用,分別表示和的面積,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,是自然對數(shù)的底數(shù).
(1)若曲線在點處的切線為,求的值;
(2)求函數(shù)的極大值;
(3)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次知識競賽規(guī)則如下:在主辦方預(yù)設(shè)的7個問題中,選手若能連續(xù)正確回答出兩個問題,即停止答題,晉級下一輪.假設(shè)某選手正確回答每個問題的概率都是0.7,且每個問題的回答結(jié)果相互獨立,則該選手恰好回答了5個問題就晉級下一輪的概率等于( )
A.0.07497B.0.92503C.0.1323D.0.6174
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: 的左、右焦點分別為, 為坐標(biāo)原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com