(其中m,n∈{-1,2,3})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個(gè),則此方程是焦點(diǎn)在x軸上的雙曲線方程的概率為( )
A.
B.
C.
D.
【答案】分析:m和n的所有可能取值共有3×3=9個(gè),其中有兩種不符合題意,故共有7種,可一一列舉,從中數(shù)出能使方程是焦點(diǎn)在x軸上的雙曲線的選法,即m和n都為正的選法數(shù),最后由古典概型的概率計(jì)算公式即可得其概率
解答:解:設(shè)(m,n)表示m,n的取值組合,則取值的所有情況有(-1,-1),(2,-1),(2,2),(2,3),(3,-1),(3,2),(3,3)共7個(gè),(注意(-1,2),(-1,3)不合題意)
其中能使方程是焦點(diǎn)在x軸上的雙曲線的有:(2,2),(2,3),(3,2),(3,3)共4個(gè)
∴此方程是焦點(diǎn)在x軸上的雙曲線方程的概率為
故選B
點(diǎn)評(píng):本題考查了古典概型概率的求法,橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程,列舉法計(jì)數(shù)的技巧,準(zhǔn)確計(jì)數(shù)是解決本題的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

數(shù)學(xué)公式(其中m,n∈{-1,2,3})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個(gè),則此方程是焦點(diǎn)在x軸上的雙曲線方程的概率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省衡水市冀州中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

(其中m,n∈{-1,2,3})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個(gè),則此方程是焦點(diǎn)在x軸上的雙曲線方程的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年安徽師大附中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

(其中m,n∈{-1,2,3})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個(gè),則此方程是焦點(diǎn)在x軸上的雙曲線方程的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽師大附中高三第一次摸底數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

(其中m,n∈{-1,2,3})所表示的圓錐曲線(橢圓、雙曲線、拋物線)方程中任取一個(gè),則此方程是焦點(diǎn)在x軸上的雙曲線方程的概率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案