1.給出以下四個(gè)命題:
①已知命題p:?x∈R,tanx=2;命題q:?x∈R,x2-x+1≥0,則命題p且q是真命題;
②命題“若m≤1,則x2-2x+m=0有實(shí)根”的逆否命題;
③命題“x≥1,則x2≥1”的逆命題;
④命題“面積相等的三角形全等”的否命題.
其中正確命題的序號為①②④.(把你認(rèn)為正確的命題序號都填上)

分析 ①判斷p,q都為真命題,得出且命題也為真命題;
②③可先求出否命題,根據(jù)逆命題和否命題為等價(jià)命題進(jìn)行判斷;
④先求出逆命題進(jìn)行判斷.

解答 解:①命題p:?x∈R,tanx=2;知p為證明題;命題q:?x∈R,x2-x+1=(x-$\frac{1}{2}$)2+$\frac{3}{4}$≥0,也為真命題,則命題p且q是真命題,故正確;
②命題“若m≤1,則x2-2x+m=0有實(shí)根”中△=4-4m≥0,有實(shí)根,是真命題,故其逆否命題也是真命題,故正確;
③命題“x≥1,則x2≥1”的否命題為:x<1,則x2<1為假命題,故逆命題也為假命題,故錯(cuò)誤;
④命題“面積相等的三角形全等”的逆命題為若三角形全等,則面積相等為真命題,故否命題也為真命題,故正確.
故答案為①②④.

點(diǎn)評 考查了四種命題的關(guān)系和且命題的真假判斷,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“$\frac{1}{x}≥1$”是“2x-1≤1”成立的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[0,2]時(shí),f(x)=($\sqrt{2}$)x-1,若關(guān)于x的方程f(x)-loga(x+2)=0(a>0且a≠1)在區(qū)間(-2,6)內(nèi)恰有4個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{4}$,1)B.(1,4)C.(1,8)D.(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知全集U=R,集合A={x|-1≤x≤3},B={x|x<2},則A∩B=[-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$a={(0.3)^{\sqrt{3}}},b={log_{\sqrt{3}}}0.3,c={(\sqrt{3})^{0.3}}$,則a,b,c三個(gè)數(shù)用“<”連接表示為b<a<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.高安二中高中年級早上7點(diǎn)早讀,假設(shè)該校學(xué)生小x與小y在早上6:30-6:50之間到校且每人在該時(shí)間段的任何時(shí)間到校是等可能的,則小x比小y至少早5分鐘到校的概率為$\frac{9}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,△ABC是邊長為1正三角形,CD=DA=$\frac{{\sqrt{3}}}{3}$,AC與BD的交點(diǎn)為M,點(diǎn)N在線段PB上,且PN=$\frac{1}{2}$.若二面角A-BC-P的正切值為2$\sqrt{2}$.
(I)求證:MN∥平面PDC;
(Ⅱ)求平面DCP與平面ABP所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.有一個(gè)棱長為1的正方體,對稱中心在原點(diǎn)且每一個(gè)面都平行于坐標(biāo)平面,給出以下各點(diǎn):A(1,0,1),B(-1,0,1),C($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{5}$),D($\frac{1}{5}$,$\frac{1}{2}$,$\frac{1}{2}$),E($\frac{2}{5}$,-$\frac{1}{2}$,0),F(xiàn)(1,$\frac{1}{2}$,$\frac{1}{3}$),則位于正方體之外的點(diǎn)是A,B,F(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.△ABC的頂點(diǎn)坐標(biāo)分別為點(diǎn)A(-1,2),B(3,1),C(2,-3),判斷△ABC是否為直角三角形.

查看答案和解析>>

同步練習(xí)冊答案