某城市有甲、乙、丙3個旅游景點,一位客人游覽這3個景點的概率分別為0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(1)求ξ的分布;
(2)求ξ的數(shù)學期望及方差;
(3)記“函數(shù)f(x)=x2-2ξx+lnx是單調(diào)增函數(shù)”為事件A,求事件A的概率.
(可能用到的數(shù)據(jù):0.762≈0.58,0.482≈0.23,1.522≈2.31,0.242≈0.06)
分析:(1)客人游覽的景點數(shù)的可能取值為0,1,2,3.相應地,客人沒有游覽的景點數(shù)的可能取值為3,2,1,0,所以ξ的可能取值為1,3.P(ξ=3)=P(A1•A2•A3)+P(
.
A1
.
A2
.
A3
),由此能求出ξ的分布列;
(2)由(1)求出ξ的數(shù)學期望與方差;
(3)由于函數(shù)f(x)=x2-2ξx+lnx是單調(diào)增函數(shù),故f′(x)=2x-2ξ+
1
x
≥0
恒成立,解得ξ≤
2
,進而得到事件A的概率.
解答:解:(1)∵ξ=1表示客人游覽了1個景點或2個景點
∴P(ξ=1)=1-0.4×0.5×0.6-(1-0.4)(1-0.5)(1-0.6)=0.76…(2分)
∵ξ=3表示客人游覽了0個景點或3個景點
∴P(ξ=3)=(1-0.4)(1-0.5)(1-0.6)+0.4×0.5×0.6=0.24…(5分)
故ξ的分布為:
ξ 1 3
P 0.76 0.24
(2)E(ξ)=1×0.76+3×0.24=1.48…(8分)
D(ξ)=(1-1.48)2×0.76+(3-1.48)2×0.24=0.23×0.76+2.31×0.24=0.7292
…(11分)
(3)∵函數(shù)f(x)=x2-2ξx+lnx是單調(diào)增函數(shù)
f′(x)=2x-2ξ+
1
x
≥0

ξ≤x+
1
2x
(x>0)
x+
1
2x
2
ξ≤
2
…(14分)
P(A)=P(ξ≤
2
)=P(ξ=1)=0.76
…(16分)
點評:本題考查離散型隨機變量的期望和方差以及導數(shù)有關的不等式恒成立問題,是中檔題.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(Ⅰ)求ξ的分布及數(shù)學期望;
(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響.
(1)求客人游覽2個景點的概率;
(2)設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值,求ξ的分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科做)某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(Ⅰ)求ξ的分布及數(shù)學期望;
(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(05年湖南卷理)(14分)

       某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.

(Ⅰ)求ξ的分布及數(shù)學期望;

(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

同步練習冊答案