考查正方體的六個(gè)面的中心,從中任意選出三個(gè)點(diǎn)連成三角形,再把剩下的三個(gè)點(diǎn)也連成三角形,則所得的兩個(gè)三角形全等的概率為________.

1
分析:由題意利用正方體畫出三角形并判斷出形狀和兩個(gè)三角形的關(guān)系,得出所求的事件為必然事件,故求出它的概率.
解答:解:正方體六個(gè)面的中心任取三個(gè)只能組成兩種三角形,
一種是等腰直角三角形,如圖甲.另一種是正三角形,如圖乙.
若任取三個(gè)點(diǎn)構(gòu)成的是等腰直角三角形,剩下的三個(gè)點(diǎn)也一定構(gòu)成等腰直角三角形,
若任取三個(gè)點(diǎn)構(gòu)成的是正三角形,剩下的三點(diǎn)也一定構(gòu)成正三角形.
所以所得的兩個(gè)三角形全等,
這是一個(gè)必然事件,因此概率為1,
故答案為:1.
點(diǎn)評(píng):本題考查立體幾何中的概率問題,解決問題的關(guān)鍵是弄清空間中的點(diǎn)的位置關(guān)系.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

考查正方體的六個(gè)面的中心,從中任意選出三個(gè)點(diǎn)連成三角形,再把剩下的三個(gè)點(diǎn)也連成三角形,則所得的兩個(gè)三角形全等的概率為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省高考數(shù)學(xué)沖刺試卷(文科)(解析版) 題型:解答題

考查正方體的六個(gè)面的中心,從中任意選出三個(gè)點(diǎn)連成三角形,再把剩下的三個(gè)點(diǎn)也連成三角形,則所得的兩個(gè)三角形全等的概率為   

查看答案和解析>>

同步練習(xí)冊(cè)答案