將一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為m,第二次出現(xiàn)的點(diǎn)數(shù)為n,向量
p
=(m,n),
q
=(3,6),則向量
p
q
共線的概率為( 。
A.
1
3
B.
1
4
C.
1
6
D.
1
12
由題意可得:基本事件(m,n)(m,n=1,2,…,6)的個(gè)數(shù)=6×6=36.
p
q
,則6m-3n=0,得到n=2m.滿足此條件的共有(1,2),(2,4),(3,6)三個(gè)基本事件.
因此向量
p
q
共線的概率P=
3
36
=
1
12

故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)將一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為m,第二次出現(xiàn)的點(diǎn)數(shù)為n,向量
p
=(m,n),
q
=(3,6),則向量
p
q
共線的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為m,第二次出現(xiàn)的點(diǎn)數(shù)為n,向量
p
=(m,n),
q
=(2,6)
,則向量
p
q
共線的概率為
1
18
1
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東莞二模)將一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為m,第二次出現(xiàn)的點(diǎn)數(shù)為n,向量
p
=(m,n),
q
=(3,6),則向量
p
q
共線的概率為
1
12
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為m,第二次出現(xiàn)的點(diǎn)數(shù)為n.向量=(m,n),= (3,6),則向量共線的概率為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年廣東省高二上學(xué)期期中考試文科數(shù)學(xué) 題型:填空題

將一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為m,第二次出現(xiàn)的點(diǎn)數(shù)為n ,向量=(m,n),=(3,6),則向量共線的概率為[       

 

查看答案和解析>>

同步練習(xí)冊答案