【題目】設(shè)函數(shù) ,若存在 同時(shí)滿足以下條件:①對(duì)任意的 ,都有 成立;② ,則 的取值范圍是 .
【答案】
【解析】∵對(duì)任意的 ,都有 成立,且 ∴對(duì) 成立,只需滿足 即可. ∵ ∴當(dāng) 時(shí), ∵ ∴ ∴ 或
所以答案是
【考點(diǎn)精析】掌握函數(shù)的定義域及其求法和函數(shù)的值域是解答本題的根本,需要知道求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= ,且直線l經(jīng)過曲線C的左焦點(diǎn)F. ( I )求直線l的普通方程;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長為L,求L的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax+ (a∈R).
(1)當(dāng)a=﹣ 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)若g(x)=f(x)+a(x﹣1)有兩個(gè)零點(diǎn)x1 , x2 , 且x1<x2 , 求證:x1+x2>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列 滿足:① ;②所有項(xiàng) ;③ .
設(shè)集合 ,將集合 中的元素的最大值記為 .換句話說, 是
數(shù)列 中滿足不等式 的所有項(xiàng)的項(xiàng)數(shù)的最大值.我們稱數(shù)列 為數(shù)列 的
伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)若數(shù)列 的伴隨數(shù)列為1,1,1,2,2,2,3,請(qǐng)寫出數(shù)列 ;
(2)設(shè) ,求數(shù)列 的伴隨數(shù)列 的前100之和;
(3)若數(shù)列 的前 項(xiàng)和 (其中 常數(shù)),試求數(shù)列 的伴隨數(shù)列 前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中學(xué)校共有學(xué)生1800名,各年級(jí)男女學(xué)生人數(shù)如表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二女生的概率是0.16.
高一年級(jí) | 高二年級(jí) | 高三年級(jí) | |
女生 | 324 | x | 280 |
男生 | 316 | 312 | y |
現(xiàn)用分層抽樣的方法,在全校抽取45名學(xué)生,則應(yīng)在高三抽取的學(xué)生人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的通項(xiàng)公式為an=2n﹣1(n∈N*),且a2 , a5分別是等比數(shù)列{bn}的第二項(xiàng)和第三項(xiàng),設(shè)數(shù)列{cn}滿足cn= ,{cn}的前n項(xiàng)和為Sn
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)是否存在m∈N* , 使得Sm=2017,并說明理由
(3)求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題: ①已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為 ;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2a﹣b>1”的充分不必要條件;
③函數(shù)f(x)= ﹣( )x的零點(diǎn)個(gè)數(shù)為1;
④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n≤n2+1.
其中真命題的序號(hào)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com