設(shè)與拋物線y2=-4x的準(zhǔn)線圍成的三角形區(qū)域(包含邊界)為D,P(x,y)為D內(nèi)的一個(gè)動(dòng)點(diǎn),則目標(biāo)函數(shù)z=x-2y的最大值為   
【答案】分析:先確定平面區(qū)域,作出可行域,進(jìn)而可求目標(biāo)函數(shù)z=x-2y的最大值.
解答:解:由題意,拋物線y2=-4x的準(zhǔn)線x=1,它和不等式共同圍成的三角形區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124036156133151/SYS201310251240361561331011_DA/1.png">,
目標(biāo)函數(shù)為z=x-2y+5,作出可行域如右圖,
由圖象可知當(dāng)直線經(jīng)過點(diǎn)C時(shí),直線z=x-2y+5的截距最小,此時(shí)z最大,
點(diǎn)C的坐標(biāo)為(1,-1),此時(shí)z=1-2×(-1)=3.
故答案為:3.
點(diǎn)評(píng):本題考查拋物線的簡(jiǎn)單性質(zhì),考查線性規(guī)劃知識(shí),正確確定平面區(qū)域是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)雙曲線與橢圓
x2
27
+
y2
36
=1
有相同的焦點(diǎn),且與橢圓相交,一個(gè)交點(diǎn)A的縱坐標(biāo)為4,求此雙曲線的標(biāo)準(zhǔn)方程.
(2)設(shè)橢圓
x2
m2
+
y2
n2
=1
(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為
1
2
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為
1
2
,求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)雙曲線與橢圓
x2
27
+
y2
36
=1有相同的焦點(diǎn),且與橢圓相交,一個(gè)交點(diǎn)A的縱坐標(biāo)為4,求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線y=2x-4與拋物線y2=4x交于A,B兩點(diǎn)(點(diǎn)A在第一象限).
(Ⅰ)求A,B兩點(diǎn)的坐標(biāo);
(Ⅱ)若拋物線y2=4x的焦點(diǎn)為F,求cos∠AFB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2
3
,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下各個(gè)關(guān)于圓錐曲線的命題中
①設(shè)定點(diǎn)F1(0,-3),F(xiàn)2(0,3),動(dòng)點(diǎn)P(x,y)滿足條件|PF1|+|PF2|=a(a>0),則動(dòng)點(diǎn)P的軌跡是橢圓或線段;
②過點(diǎn)(0,1)作直線,使它與拋物線y2=4x僅有一個(gè)公共點(diǎn),這樣的直線有3條;
③離心率為
1
2
,長(zhǎng)軸長(zhǎng)為8的橢圓標(biāo)準(zhǔn)方程為
x2
16
+
y2
12
=1
;
④若3<k<4,則二次曲線
x2
4-k
+
y2
3-k
=1
的焦點(diǎn)坐標(biāo)是(±1,0).
其中真命題的序號(hào)為
②④
②④
(寫出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案