分析 根據(jù)函數(shù)零點(diǎn)存在定理,可判斷①;根據(jù)正切函數(shù)的單調(diào)性,可判斷②;根據(jù)函數(shù)周期性,可判斷③;根據(jù)定義域不關(guān)于原點(diǎn)對(duì)稱的函數(shù),是非奇非偶函數(shù),可判斷④;根據(jù)x=-$\frac{1}{3}$時(shí),兩個(gè)向量反向,可判斷⑤.
解答 解:①已知用二分法求方程3x+3x-8=0在x∈(1,2)內(nèi)的近似解過程中得:
f(1)<0,f(1.5)>0,f(1.25)<0,
則方程的根落在區(qū)間(1.25,1.5),故正確;
②y=tanx在它的定義域內(nèi),圖象不連續(xù),不具有單調(diào)性,故錯(cuò)誤;
③函數(shù)y=$\frac{tanx}{1-tanx}$的最小正周期為π,故正確,
④函數(shù)f(x)=$\frac{1+sinx-cosx}{1+sinx+cosx}$的定義域?yàn)椋簕x|x≠π+2kπ,且|x≠-$\frac{π}{2}$+2kπ,k∈Z}不關(guān)于原點(diǎn)對(duì)稱,故函數(shù)是非奇非偶函數(shù),故④錯(cuò)誤;
⑤已知$\overrightarrow{AB}$=(x,2x),$\overrightarrow{AC}$=(-3x,2),若∠BAC是鈍角,則x的取值范圍是x<$-\frac{1}{3}$,或$-\frac{1}{3}$<x<0或x>$\frac{4}{3}$,故⑤錯(cuò)誤;
故正確的說法是:①③,
故答案為:①③
點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了零點(diǎn)存在定理,函數(shù)的單調(diào)性,函數(shù)的周期性,函數(shù)的奇偶性,向量的夾角等知識(shí)點(diǎn),難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\frac{7}{4},+∞)$ | B. | [-2,+∞) | C. | (-∞,-2] | D. | $[-2,-\frac{7}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {-1,0} | C. | {-2,3,4} | D. | {2,3,4} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com