已知圓O1和圓O2的極坐標(biāo)方程分別為ρ2-2
2
ρcos(θ-
π
4
)=2,ρ=2.則經(jīng)過兩圓交點(diǎn)的直線的極坐標(biāo)方程為
 
考點(diǎn):點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化
專題:坐標(biāo)系和參數(shù)方程
分析:先利用三角函數(shù)的差角公式展開圓O2的極坐標(biāo)方程的右式,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得圓O2的直角坐標(biāo)方程及圓O1直角坐標(biāo)方程.算出經(jīng)過兩圓交點(diǎn)的直線方程,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系求出其極坐標(biāo)方程即可.
解答: 解:ρ=2⇒ρ2=4,所以x2+y2=4;因?yàn)棣?SUP>2-2
2
ρcos(θ-
π
4
)=2,
所以ρ2-2
2
ρ(cosθcos
π
4
+sinθsin
π
4
)=2,所以x2+y2-2x-2y-2=0.(5分)
將兩圓的直角坐標(biāo)方程相減,得經(jīng)過兩圓交點(diǎn)的直線方程為x+y=1.
化為極坐標(biāo)方程為ρcosθ+ρsinθ=1,即ρsin(θ+
π
4
)=
2
2
.(10分)
故答案為:ρsin(θ+
π
4
)=
2
2
.(或ρcos θ+ρsin θ=1也可).
點(diǎn)評:本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn.求an及Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2lnx-
1
x
,對于任意的x1,x2∈(0,+∞),有|f(x1)-f(x2)|≥m|
1
x1
-
1
x2
|,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列的算式:

從中歸納出一個(gè)一般性的結(jié)論:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,Sn=n2,則a17+a18+a19+a20的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=a2-a+ai(i為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)氣象臺(tái)統(tǒng)計(jì),刮風(fēng)的概率為
2
15
,既刮風(fēng)又下雨的概率為
1
10
,設(shè)A為刮風(fēng),B為下雨,則P(B|A)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=3,
a
b
的夾角為30°,則|
a
+
b
||
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=sin(
π
2
x+
π
3
),若對任意x∈R,存在x1,x2使f(x1)≤f(x)≤f(x2)恒成立,則|x1-x2|的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案