已知橢圓數(shù)學(xué)公式上的任意一點(diǎn)到它的兩個(gè)焦點(diǎn)F1(-c,0),F(xiàn)2(c,0)(c>0)的距離之和為數(shù)學(xué)公式,且其焦距為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線(xiàn)x-y+m=0與橢圓C交于不同的兩點(diǎn)A,B.問(wèn)是否存在以A,B為直徑的圓過(guò)橢圓的右焦點(diǎn)F2.若存在,求出m的值;不存在,說(shuō)明理由.

解:(Ⅰ)依題意可知
又b2=a2-c2,解得------------------(2分)
則橢圓方程為.---------------------(4分)
(Ⅱ)聯(lián)立方程消去y整理得:3x2+4mx+2m2-2=0(6分)
則△=16m2-12(2m2-2)=8(-m2+3)>0
解得①--------------------(7分)
設(shè)A(x1,y1),B(x2,y2),則,,
又F2(1,0),∴,
若存在,則,即:(x1-1)(x2-1)+y1y2=0,∴x1x2-(x1+x2)+1+y1y2=0②
又y1=x1+m,y2=x2+m,∴
代入②有

解得------------------(11分)
檢驗(yàn)都滿(mǎn)足①,∴------------------(12分)
分析:(Ⅰ)利用橢圓上的任意一點(diǎn)到它的兩個(gè)焦點(diǎn)的距離之和為,且其焦距為2,建立方程組,求得幾何量,從而可求橢圓C的方程;
(Ⅱ)直線(xiàn)與橢圓方程聯(lián)立,利用韋達(dá)定理,及向量知識(shí),即可求得結(jié)論.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線(xiàn)與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省高二下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,已知橢圓上的任意一點(diǎn),滿(mǎn)足,過(guò)作垂直于橢圓長(zhǎng)軸的弦長(zhǎng)為3.

(1)求橢圓的方程;

(2)若過(guò)的直線(xiàn)交橢圓于兩點(diǎn),求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧省盤(pán)錦市高三第二次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分12分)已知橢圓上的任意一點(diǎn)到它的兩個(gè)焦點(diǎn), 的距離之和為,且其焦距為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線(xiàn)與橢圓交于不同的兩點(diǎn)A,B.問(wèn)是否存在以A,B為直徑

 的圓 過(guò)橢圓的右焦點(diǎn).若存在,求出的值;不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓上的任意一點(diǎn)到它兩個(gè)焦點(diǎn)的距離之和為,且它的焦距為2.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線(xiàn)與橢圓交于不同兩點(diǎn),且線(xiàn)段的中點(diǎn)不在圓內(nèi),求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省長(zhǎng)春十一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓上的任意一點(diǎn)到它的兩個(gè)焦點(diǎn)F1(-c,0),F(xiàn)2(c,0)(c>0)的距離之和為,且其焦距為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線(xiàn)x-y+m=0與橢圓C交于不同的兩點(diǎn)A,B.問(wèn)是否存在以A,B為直徑的圓過(guò)橢圓的右焦點(diǎn)F2.若存在,求出m的值;不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案