(本小題共12分)如圖,一張平行四邊形的硬紙片中,,。沿它的對角線把△折起,使點(diǎn)到達(dá)平面外點(diǎn)的位置。
(Ⅰ)證明:平面平面;
(Ⅱ)如果△為等腰三角形,求二面角的大小。
【解析】解:(Ⅰ)證明:因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012051812220948435297/SYS201205181223080156598236_DA.files/image002.png">,,
所以,。
因?yàn)檎郫B過程中,,
所以,又,故平面。
又平面,所以平面平面。
(Ⅱ)如圖,延長到,使,連結(jié),。
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012051812220948435297/SYS201205181223080156598236_DA.files/image020.png">,,,,所以為正方形,。
由于,都與平面垂直,所以,可知。
因此只有時(shí),△為等腰三角形。
在△中,,又,
所以△為等邊三角形,。
由(Ⅰ)可知,,所以為二面角的平面角,即二面角的大小為。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江哈爾濱市高三第五次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共12分)
如圖,已知直線l與拋物線相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),
定點(diǎn)B的坐標(biāo)為(2,0).
(1)若動(dòng)點(diǎn)M滿足,求點(diǎn)M的軌跡C;
(2)若過點(diǎn)B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江哈爾濱市高三第五次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共12分)
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=.
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市高三階段考試(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共12分)如圖,四邊形是矩形,平面,是上一點(diǎn),平面,點(diǎn),分別是,的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第四次模擬考試文科數(shù)學(xué)試卷 題型:解答題
(本小題共12分)如圖所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,
F為CE上的點(diǎn),且BF⊥平面ACE
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年陜西省漢中市漢臺(tái)區(qū)高二上學(xué)期期末數(shù)學(xué)文卷 題型:解答題
(本小題共12分)如圖,△ACD是等邊三角形,△ABC是等腰直角
三角形,∠ACB=90°,BD交AC于E,AB=2.
(1)求cos∠CBE的值;
(2)求AE。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com