(2008•上海模擬)已知向量
m
n
,其中
m
=(
1
x3+c-1
,-1)
n
=(-1,y)
(x,y,c∈R),把其中x,y所滿足的關系式記為y=f(x),若函數(shù)f(x)為奇函數(shù).
(Ⅰ) 求函數(shù)f(x)的表達式;
(Ⅱ) 已知數(shù)列{an}的各項都是正數(shù),Sn為數(shù)列{an}的前n項和,且對于任意n∈N*,都有“{f(an)}的前n項和等于Sn2,”求數(shù)列{an}的通項式;
(Ⅲ) 若數(shù)列{bn}滿足bn=4n-a•2an+1(a∈R),求數(shù)列{bn}的最小值.
分析:(Ⅰ)根據(jù)向量平行得出函數(shù)y=f(x),再利用函數(shù)f(x)為奇函數(shù),可求c=1,從而可得函數(shù)f(x)的表達式;
(Ⅱ) 根據(jù)條件對于任意n∈N*,都有“{f(an)}的前n項和等于Sn2,寫出兩等式,兩式相減可得∴{an}為公差為1的等差數(shù)列,從而可求數(shù)列{an}的通項公式;
(Ⅲ)根據(jù)an=n(n∈N*),可得bn=4n-a•2n+1=(2n-a)2-a2,由于2n≥2,故需對a進行分類討論.
解答:解:(Ⅰ)∵
m
n
1
x3+c-1
•y-1=0⇒y=x3+c-1(x3+c-1≠0)
,
因為函數(shù)f(x)為奇函數(shù).所以c=1,⇒f(x)=x3(x≠0)…(4分)
(Ⅱ)由題意可知,f(a1)+f(a2)+…+f(an)=Sn2⇒a13+a23+a33+…+an3=Sn2…..①
n≥2時∴a13+a23+a33+…+an-13=Sn-12…②
由①-②可得:an3=Sn2-Sn-12=an(Sn+Sn-1),
∵{an}為正數(shù)數(shù)列∴an2=Sn+Sn-1…③…(2分)∴an+12=Sn+1+Sn…④
由④-③可得:an+12-an2=an+1+an∵an+1+an>0,∴an+1-an=1,…(2分)
且由①可得a13=a12,a1>0⇒a1=1,a13+a23=S22,a2>0⇒a2=2,∴a2-a1=1∴{an}為公差為1的等差數(shù)列,∴an=n(n∈N*)…(2分)
(Ⅲ)∵an=n(n∈N*),∴bn=4n-a•2n+1=(2n-a)2-a2(n∈N*)…(2分)
令2n=t(t≥2),∴bn=(t-a)2-a2(t≥2)
(1)當a≤2時,數(shù)列{bn}的最小值為:當n=1時,b1=4-4a.…(2分)
(2)當a>2時
①若a=2k+1(k∈N*)時,數(shù)列{bn}的最小值為當n=k+1時,bk+1=-a2.…(1分)
②若a=
2k+2k+1
2
(k∈N*)
時,數(shù)列{bn}的最小值為,當n=k或n=k+1時,bk=bk+1=(2k-a)2-a2.…(1分)
③若2k<a<
2k+2k+1
2
(k∈N*)
時,數(shù)列{bn}的最小值為,當n=k時,bk=(2k-a)2-a2…(1分)
④若
2k+2k+1
2
<a<2k+1(k∈N*)
時,數(shù)列{bn}的最小值為,當n=k+1時,bk+1=(2k+1-a)2-a2.…(1分)
點評:本題的考點是數(shù)列與向量的綜合,主要考查向量共線條件的運用,考查數(shù)列通項公式的求解,考查了函數(shù)的最值,關鍵是正確分類.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)以拋物線y2=8
3
x
的焦點F為右焦點,且兩條漸近線是
3
y=0
的雙曲線方程為
x2
9
-
y2
3
=1
x2
9
-
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)已知AB是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸,若把該長軸n等分,過每個等分點作AB的垂線,依次交橢圓的上半部分于點P1,P2,…,Pn-1,設左焦點為F1,則
lim
n→∞
1
n
(|F1A|+|F1P1|+…+|F1Pn-1|+|F1B|)
=
a
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)集合A={x||x|<2}的一個非空真子集是
[0,1]
[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)一機器貓每秒鐘前進或后退一步,程序設計師讓機器貓以前進3步,然后再后退2步的規(guī)律移動.如果將此機器貓放在數(shù)軸的原點,面向正方向,以1步的距離為1單位長移動.令P(n)表示第n秒時機器貓所在位置的坐標,且P(0)=0,則下列結論中錯誤的是( 。

查看答案和解析>>

同步練習冊答案